1,767 research outputs found

    A Multi-Information Fusion Correlation Filters Tracker

    Get PDF

    Object Tracking: Appearance Modeling And Feature Learning

    Get PDF
    Object tracking in real scenes is an important problem in computer vision due to increasing usage of tracking systems day in and day out in various applications such as surveillance, security, monitoring and robotic vision. Object tracking is the process of locating objects of interest in every frame of video frames. Many systems have been proposed to address the tracking problem where the major challenges come from handling appearance variation during tracking caused by changing scale, pose, rotation, illumination and occlusion. In this dissertation, we address these challenges by introducing several novel tracking techniques. First, we developed a multiple object tracking system that deals specially with occlusion issues. The system depends on our improved KLT tracker for accurate and robust tracking during partial occlusion. In full occlusion, we applied a Kalman filter to predict the object\u27s new location and connect the trajectory parts. Many tracking methods depend on a rectangle or an ellipse mask to segment and track objects. Typically, using a larger or smaller mask will lead to loss of tracked objects. Second, we present an object tracking system (SegTrack) that deals with partial and full occlusions by employing improved segmentation methods: mixture of Gaussians and a silhouette segmentation algorithm. For re-identification, one or more feature vectors for each tracked object are used after target reappearing. Third, we propose a novel Bayesian Hierarchical Appearance Model (BHAM) for robust object tracking. Our idea is to model the appearance of a target as combination of multiple appearance models, each covering the target appearance changes under a certain situation (e.g. view angle). In addition, we built an object tracking system by integrating BHAM with background subtraction and the KLT tracker for static camera videos. For moving camera videos, we applied BHAM to cluster negative and positive target instances. As tracking accuracy depends mainly on finding good discriminative features to estimate the target location, finally, we propose to learn good features for generic object tracking using online convolutional neural networks (OCNN). In order to learn discriminative and stable features for tracking, we propose a novel object function to train OCNN by penalizing the feature variations in consecutive frames, and the tracker is built by integrating OCNN with a color-based multi-appearance model. Our experimental results on real-world videos show that our tracking systems have superior performance when compared with several state-of-the-art trackers. In the feature, we plan to apply the Bayesian Hierarchical Appearance Model (BHAM) for multiple objects tracking

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches
    • …
    corecore