112 research outputs found

    A novel adaptive particle swarm optimization algorithm based high precision parameter identification and state estimation of lithium-ion battery.

    Get PDF
    Lithium-ion batteries are widely used in new energy vehicles, energy storage systems, aerospace and other fields because of their high energy density, long cycle life and high-cost performance. Accurate equivalent modeling, adaptive internal state characterization and accurate state of charge estimation are the cornerstones of expanding the application market of lithium-ion batteries. According to the highly nonlinear operating characteristics of lithium-ion batteries, the Thevenin equivalent model is used to characterize the operating characteristics of lithium-ion batteries, particle swarm optimization algorithm is used to process the measured data, and adaptive optimization strategy is added to improve the global search ability of particles, and the parameters of the model are identified innovatively. Combined with extended Kalman algorithm and Sage-Husa filtering algorithm, the state-of-charge estimation model of lithium ion battery is constructed. Aiming at the influence of fixed and inaccurate noise initial value in traditional Kalman filtering algorithm on SOC estimation results, Sage-Husa algorithm is used to adaptively correct system noise. The experimental results under HPPC condition show that the maximum error of the model is less than 1.5%. Simulation results of SOC estimation algorithm under two different operating conditions show that the maximum estimation error of adaptive extended Kalman algorithm is less than 0.05, which realizes high-precision lithium battery model parameter identification and high-precision state-of-charge estimation

    SoC estimation for lithium-ion batteries : review and future challenges

    Get PDF
    ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence

    Decreasing weight particle swarm optimization combined with unscented particle filter for the non-linear model for lithium battery state of charge estimation.

    Get PDF
    Accurate estimation of State of Charge (SOC) of wireless sensor network nodes is of great significance for wireless sensor network layout. A combination strategy method based on unscented particle filter using weight particle swarm optimization (PSO UPF) algorithm is proposed to improve estimation accuracy. The particle filter (PF) algorithm is usually used to deal with nonlinear problems, easily falling into particle degeneration and particle shortage. The unscented particle filter (UPF) algorithm can overcome the shortcomings by using the unscented Kalman filter (UKF) to generate the importance density function. Meanwhile, the particle swarm optimization (PSO) algorithm could improve the resampling process to solve particle shortage. Thus, the combination strategy improves the importance density function and the resampling method simultaneously. With the simulation comparison of PF, UPF and PSO UPF algorithms, the results show that the proposed algorithm has higher estimation accuracy with the root mean square error less than 1%. Furthermore, the proposed algorithm could achieve good accuracy with few particles, which could save running time and improve the estimate efficiency

    Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles

    Get PDF
    The transport sector is tackling the challenge of reducing vehicle pollutant emissions and carbon footprints by means of a shift to electrified powertrains, i.e., battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). However, electrified vehicles pose new issues associated with the design and energy management for the efficient use of onboard energy storage systems (ESSs). Thus, strong attention should be devoted to ensuring the safety and efficient operation of the ESSs. In this framework, a dedicated battery management system (BMS) is required to contemporaneously optimize the battery’s state of charge (SoC) and to increase the battery’s lifespan through tight control of its state of health (SoH). Despite the advancements in the modern onboard BMS, more detailed data-driven algorithms for SoC, SoH, and fault diagnosis cannot be implemented due to limited computing capabilities. To overcome such limitations, the conceptualization and/or implementation of BMS in-cloud applications are under investigation. The present study hence aims to produce a new and comprehensive review of the advancements in battery management solutions in terms of functionality, usability, and drawbacks, with specific attention to cloud-based BMS solutions as well as SoC and SoH prediction and estimation. Current gaps and challenges are addressed considering V2X connectivity to fully exploit the latest cloud-based solutions

    A study on battery model parametrisation problem: application-oriented trade-offs between accuracy and simplicity

    Get PDF
    This study is focused on fast low-fidelity battery modelling for online applications. Because the battery parameters change due to variations of battery’s states, the model may need to be updated during operation. This can be achieved through the use of an online parameter identification technique, making use of online current-voltage measurements. The parametrisation algorithm’s speed is a crucial issue in such applications. This paper describes a study exploring the trade-offs between speed and accuracy, considering equivalent circuit models with different levels of complexity and different parameter-fitting algorithms. A visual investigation of the battery parametrisation problem is also proposed by obtaining battery model identification surfaces which help us to avoid unnecessary complexities. Three standard fitting algorithms are used to parametrise battery models using current-voltage measurements. For each level of complexity, the algorithms performances are evaluated using experimental data from a small NiMH battery pack. An application-oriented view on this trade-offs is discussed which demonstrates that the final target of the battery parametrisation problem can significantly affect the choice of the fitting algorithm and battery model structur

    Battery Management System for Future Electric Vehicles

    Get PDF
    The future of electric vehicles relies nearly entirely on the design, monitoring, and control of the vehicle battery and its associated systems. Along with an initial optimal design of the cell/pack-level structure, the runtime performance of the battery needs to be continuously monitored and optimized for a safe and reliable operation and prolonged life. Improved charging techniques need to be developed to protect and preserve the battery. The scope of this Special Issue is to address all the above issues by promoting innovative design concepts, modeling and state estimation techniques, charging/discharging management, and hybridization with other storage components

    A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter.

    Get PDF
    The control strategy of electric vehicles mainly depends on the power battery state-of-charge estimation. One of the most important issues is the power lithium-ion battery state-of-charge (SOC) estimation. Compare with the extended Kalman filter algorithm, this paper proposed a novel adaptive square root extended Kalman filter together with the Thevenin equivalent circuit model which can solve the problem of filtering divergence caused by computer rounding errors. It uses Sage-Husa adaptive filter to update the noise variable, and performs square root decomposition on the covariance matrix to ensure its non-negative definiteness. Moreover, a multi-scale dual Kalman filter algorithm is used for joint estimation of SOC and capacity; the forgetting factor recursive least-square method is used for parameter identification. To verify the feasibility of the algorithm under complicated operating conditions, different types of dynamic working conditions are performed on the ternary lithium-ion battery. The proposed algorithm has robust and accurate SOC estimation results and can eliminate computer rounding errors to improve adaptability compared to the conventional extended Kalman filter algorithm

    Overview of Lithium-Ion battery modeling methods for state-of-charge estimation in electrical vehicles

    Get PDF
    As a critical indictor in the Battery Management System (BMS), State of Charge (SOC) is closely related to the reliable and safe operation of lithium-ion (Li-ion) batteries. Model-based methods are an effective solution for accurate and robust SOC estimation, the performance of which heavily relies on the battery model. This paper mainly focuses on battery modeling methods, which have the potential to be used in a model-based SOC estimation structure. Battery modeling methods are classified into four categories on the basis of their theoretical foundations, and their expressions and features are detailed. Furthermore, the four battery modeling methods are compared in terms of their pros and cons. Future research directions are also presented. In addition, after optimizing the parameters of the battery models by a Genetic Algorithm (GA), four typical battery models including a combined model, two RC Equivalent Circuit Model (ECM), a Single Particle Model (SPM), and a Support Vector Machine (SVM) battery model are compared in terms of their accuracy and execution time

    A Comprehensive Review and Application of Metaheuristics in Solving the Optimal Parameter Identification Problems

    Get PDF
    For many electrical systems, such as renewable energy sources, their internal parameters are exposed to degradation due to the operating conditions. Since the model’s accuracy is required for establishing proper control and management plans, identifying their parameters is a critical and prominent task. Various techniques have been developed to identify these parameters. However, metaheuristic algorithms have received much attention for their use in tackling a wide range of optimization issues relating to parameter extraction. This work provides an exhaustive literature review on solving parameter extraction utilizing recently developed metaheuristic algorithms. This paper includes newly published articles in each studied context and its discussion. It aims to approve the applicability of these algorithms and make understanding their deployment easier. However, there are not any exact optimization algorithms that can offer a satisfactory performance to all optimization issues, especially for problems that have large search space dimensions. As a result, metaheuristic algorithms capable of searching very large spaces of possible solutions have been thoroughly investigated in the literature review. Furthermore, depending on their behavior, metaheuristic algorithms have been divided into four types. These types and their details are included in this paper. Then, the basics of the identification process are presented and discussed. Fuel cells, electrochemical batteries, and photovoltaic panel parameters identification are investigated and analyzed
    • …
    corecore