8,591 research outputs found

    Great cities look small

    Get PDF
    Great cities connect people; failed cities isolate people. Despite the fundamental importance of physical, face-to-face social-ties in the functioning of cities, these connectivity networks are not explicitly observed in their entirety. Attempts at estimating them often rely on unrealistic over-simplifications such as the assumption of spatial homogeneity. Here we propose a mathematical model of human interactions in terms of a local strategy of maximising the number of beneficial connections attainable under the constraint of limited individual travelling-time budgets. By incorporating census and openly-available online multi-modal transport data, we are able to characterise the connectivity of geometrically and topologically complex cities. Beyond providing a candidate measure of greatness, this model allows one to quantify and assess the impact of transport developments, population growth, and other infrastructure and demographic changes on a city. Supported by validations of GDP and HIV infection rates across United States metropolitan areas, we illustrate the effect of changes in local and city-wide connectivities by considering the economic impact of two contemporary inter- and intra-city transport developments in the United Kingdom: High Speed Rail 2 and London Crossrail. This derivation of the model suggests that the scaling of different urban indicators with population size has an explicitly mechanistic origin.Comment: 19 pages, 8 figure

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Huber Loss Reconstruction in Gradient-Domain Path Tracing

    Get PDF
    The focus of this thesis is to improve aspects related to the computational synthesis of photo-realistic images. Physically accurate images are generated by simulating the transportation of light between an observer and the light sources in a virtual environment. Path tracing is an algorithm that uses Monte Carlo methods to solve problems in the domain of light transport simulation, generating images by sampling light paths through the virtual scene. In this thesis we focus on the recently introduced gradient-domain path tracing algorithm. In addition to estimating the ordinary primal image, gradient-domain light transport algorithms also sample the horizontal and vertical gradients and solve a screened Poisson problem to reconstruct the final image. Using L2 loss for reconstruction produces an unbiased final image, but the results can often be visually unpleasing due to its sensitivity to extreme-value outliers in the sampled primal and gradient images. L1 loss can be used to suppress this sensitivity at the cost of introducing bias. We investigate the use of the Huber loss function in the reconstruction step of the gradient-domain path tracing algorithm. We show that using the Huber loss function for the gradient in the Poisson solver with a good choice of cut-off parameter can result in reduced sensitivity to outliers and consequently lower relative mean squared error than L1 or L2 when compared to ground-truth images. The main contribution of this thesis is a predictive multiplicative model for the cut-off parameter. The model takes as input pixel statistics, which can be computed on-line during sampling and predicts reconstruction parameters that on average outperforms reconstruction using L1 and L2
    • …
    corecore