9,246 research outputs found

    Deep Multiple Description Coding by Learning Scalar Quantization

    Full text link
    In this paper, we propose a deep multiple description coding framework, whose quantizers are adaptively learned via the minimization of multiple description compressive loss. Firstly, our framework is built upon auto-encoder networks, which have multiple description multi-scale dilated encoder network and multiple description decoder networks. Secondly, two entropy estimation networks are learned to estimate the informative amounts of the quantized tensors, which can further supervise the learning of multiple description encoder network to represent the input image delicately. Thirdly, a pair of scalar quantizers accompanied by two importance-indicator maps is automatically learned in an end-to-end self-supervised way. Finally, multiple description structural dissimilarity distance loss is imposed on multiple description decoded images in pixel domain for diversified multiple description generations rather than on feature tensors in feature domain, in addition to multiple description reconstruction loss. Through testing on two commonly used datasets, it is verified that our method is beyond several state-of-the-art multiple description coding approaches in terms of coding efficiency.Comment: 8 pages, 4 figures. (DCC 2019: Data Compression Conference). Testing datasets for "Deep Optimized Multiple Description Image Coding via Scalar Quantization Learning" can be found in the website of https://github.com/mdcnn/Deep-Multiple-Description-Codin

    Distributed Representation of Geometrically Correlated Images with Compressed Linear Measurements

    Get PDF
    This paper addresses the problem of distributed coding of images whose correlation is driven by the motion of objects or positioning of the vision sensors. It concentrates on the problem where images are encoded with compressed linear measurements. We propose a geometry-based correlation model in order to describe the common information in pairs of images. We assume that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g., translation) in different images. We first identify prominent visual features by computing a sparse approximation of a reference image with a dictionary of geometric basis functions. We then pose a regularized optimization problem to estimate the corresponding features in correlated images given by quantized linear measurements. The estimated features have to comply with the compressed information and to represent consistent transformation between images. The correlation model is given by the relative geometric transformations between corresponding features. We then propose an efficient joint decoding algorithm that estimates the compressed images such that they stay consistent with both the quantized measurements and the correlation model. Experimental results show that the proposed algorithm effectively estimates the correlation between images in multi-view datasets. In addition, the proposed algorithm provides effective decoding performance that compares advantageously to independent coding solutions as well as state-of-the-art distributed coding schemes based on disparity learning

    Generalized residual vector quantization for large scale data

    Full text link
    Vector quantization is an essential tool for tasks involving large scale data, for example, large scale similarity search, which is crucial for content-based information retrieval and analysis. In this paper, we propose a novel vector quantization framework that iteratively minimizes quantization error. First, we provide a detailed review on a relevant vector quantization method named \textit{residual vector quantization} (RVQ). Next, we propose \textit{generalized residual vector quantization} (GRVQ) to further improve over RVQ. Many vector quantization methods can be viewed as the special cases of our proposed framework. We evaluate GRVQ on several large scale benchmark datasets for large scale search, classification and object retrieval. We compared GRVQ with existing methods in detail. Extensive experiments demonstrate our GRVQ framework substantially outperforms existing methods in term of quantization accuracy and computation efficiency.Comment: published on International Conference on Multimedia and Expo 201

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page
    • …
    corecore