11,442 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    A single-photon sampling architecture for solid-state imaging

    Full text link
    Advances in solid-state technology have enabled the development of silicon photomultiplier sensor arrays capable of sensing individual photons. Combined with high-frequency time-to-digital converters (TDCs), this technology opens up the prospect of sensors capable of recording with high accuracy both the time and location of each detected photon. Such a capability could lead to significant improvements in imaging accuracy, especially for applications operating with low photon fluxes such as LiDAR and positron emission tomography. The demands placed on on-chip readout circuitry imposes stringent trade-offs between fill factor and spatio-temporal resolution, causing many contemporary designs to severely underutilize the technology's full potential. Concentrating on the low photon flux setting, this paper leverages results from group testing and proposes an architecture for a highly efficient readout of pixels using only a small number of TDCs, thereby also reducing both cost and power consumption. The design relies on a multiplexing technique based on binary interconnection matrices. We provide optimized instances of these matrices for various sensor parameters and give explicit upper and lower bounds on the number of TDCs required to uniquely decode a given maximum number of simultaneous photon arrivals. To illustrate the strength of the proposed architecture, we note a typical digitization result of a 120x120 photodiode sensor on a 30um x 30um pitch with a 40ps time resolution and an estimated fill factor of approximately 70%, using only 161 TDCs. The design guarantees registration and unique recovery of up to 4 simultaneous photon arrivals using a fast decoding algorithm. In a series of realistic simulations of scintillation events in clinical positron emission tomography the design was able to recover the spatio-temporal location of 98.6% of all photons that caused pixel firings.Comment: 24 pages, 3 figures, 5 table

    Foundations, Properties, and Security Applications of Puzzles: A Survey

    Full text link
    Cryptographic algorithms have been used not only to create robust ciphertexts but also to generate cryptograms that, contrary to the classic goal of cryptography, are meant to be broken. These cryptograms, generally called puzzles, require the use of a certain amount of resources to be solved, hence introducing a cost that is often regarded as a time delay---though it could involve other metrics as well, such as bandwidth. These powerful features have made puzzles the core of many security protocols, acquiring increasing importance in the IT security landscape. The concept of a puzzle has subsequently been extended to other types of schemes that do not use cryptographic functions, such as CAPTCHAs, which are used to discriminate humans from machines. Overall, puzzles have experienced a renewed interest with the advent of Bitcoin, which uses a CPU-intensive puzzle as proof of work. In this paper, we provide a comprehensive study of the most important puzzle construction schemes available in the literature, categorizing them according to several attributes, such as resource type, verification type, and applications. We have redefined the term puzzle by collecting and integrating the scattered notions used in different works, to cover all the existing applications. Moreover, we provide an overview of the possible applications, identifying key requirements and different design approaches. Finally, we highlight the features and limitations of each approach, providing a useful guide for the future development of new puzzle schemes.Comment: This article has been accepted for publication in ACM Computing Survey

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    A New Scalable, Portable, and Memory-Efficient Predictive Analytics Framework for Predicting Time-to-Event Outcomes in Healthcare

    Get PDF
    Time-to-event outcomes are prevalent in medical research. To handle these outcomes, as well as censored observations, statistical and survival regression methods are widely used based on the assumptions of linear association; however, clinicopathological features often exhibit nonlinear correlations. Machine learning (ML) algorithms have been recently adapted to effectively handle nonlinear correlations. One drawback of ML models is that they can model idiosyncratic features of a training dataset. Due to this overlearning, ML models perform well on the training data but are not so striking on test data. The features that we choose indirectly influence the performance of ML prediction models. With the expansion of big data in biomedical informatics, appropriate feature engineering and feature selection are vital to ML success. Also, an ensemble learning algorithm helps decrease bias and variance by combining the predictions of multiple models. In this study, we newly constructed a scalable, portable, and memory-efficient predictive analytics framework, fitting four components (feature engineering, survival analysis, feature selection, and ensemble learning) together. Our framework first employs feature engineering techniques, such as binarization, discretization, transformation, and normalization on raw dataset. The normalized feature set was applied to the Cox survival regression that produces highly correlated features relevant to the outcome.The resultant feature set was deployed to “eXtreme gradient boosting ensemble learning” (XGBoost) and Recursive Feature Elimination algorithms. XGBoost uses a gradient boosting decision tree algorithm in which new models are created sequentially that predict the residuals of prior models, which are then added together to make the final prediction. In our experiments, we analyzed a cohort of cardiac surgery patients drawn from a multi-hospital academic health system. The model evaluated 72 perioperative variables that impact an event of readmission within 30 days of discharge, derived 48 significant features, and demonstrated optimum predictive ability with feature sets ranging from 16 to 24. The area under the receiver operating characteristics observed for the feature set of 16 were 0.8816, and 0.9307 at the 35th, and 151st iteration respectively. Our model showed improved performance compared to state-of-the-art models and could be more useful for decision support in clinical settings
    corecore