9,550 research outputs found

    Dead Reckoning Localization Technique for Mobile Wireless Sensor Networks

    Full text link
    Localization in wireless sensor networks not only provides a node with its geographical location but also a basic requirement for other applications such as geographical routing. Although a rich literature is available for localization in static WSN, not enough work is done for mobile WSNs, owing to the complexity due to node mobility. Most of the existing techniques for localization in mobile WSNs uses Monte-Carlo localization, which is not only time-consuming but also memory intensive. They, consider either the unknown nodes or anchor nodes to be static. In this paper, we propose a technique called Dead Reckoning Localization for mobile WSNs. In the proposed technique all nodes (unknown nodes as well as anchor nodes) are mobile. Localization in DRLMSN is done at discrete time intervals called checkpoints. Unknown nodes are localized for the first time using three anchor nodes. For their subsequent localizations, only two anchor nodes are used. The proposed technique estimates two possible locations of a node Using Bezouts theorem. A dead reckoning approach is used to select one of the two estimated locations. We have evaluated DRLMSN through simulation using Castalia simulator, and is compared with a similar technique called RSS-MCL proposed by Wang and Zhu .Comment: Journal Paper, IET Wireless Sensor Systems, 201

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Embracing Localization Inaccuracy: A Case Study

    Get PDF
    In recent years, indoor localization has become a hot research topic with some sophisticated solutions reaching accuracy on the order of ten centimeters. While certain classes of applications can justify the corresponding costs that come with these solutions, a wealth of applications have requirements that can be met at much lower cost by accepting lower accuracy. This paper explores one specific application for monitoring patients in a nursing home, showing that sufficient accuracy can be achieved with a carefully designed deployment of low-cost wireless sensor network nodes in combination with a simple RSSI-based localization technique. Notably our solution uses a single radio sample per period, a number that is much lower than similar approaches. This greatly eases the power burden of the nodes, resulting in a significant lifetime increase. This paper evaluates a concrete deployment from summer 2012 composed of fixed anchor motes throughout one floor of a nursing home and mobile units carried by patients. We show how two localization algorithms perform and demonstrate a clear improvement by following a set of simple guidelines to tune the anchor node placement. We show both quantitatively and qualitatively that the results meet the functional and non-functional system requirements

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017
    • …
    corecore