18,977 research outputs found

    A Study of Attack Detection and Localization Scheme Using Enhanced Hash Technique

    Get PDF
    Security plays an vital role in wireless sensor networks. The nodes are deployed in the physical environment. Hackers may easily access the data. In order to provide security, The Advanced Encryption Standard (AES) algorithm has developed into an option for various security services. Sensor nodes collect the data from the environment and send to sink. But attackers corrupt data while transmitting therefore data security is main concern of wireless sensor network (WSN). Owing to the increasing popularity of wireless sensor networks, they have become attractive targets for malicious attacks. Due to the ad-hoc nature and openness of wireless sensor networks, they are susceptible to the identity based attack. In this paper, we study on a process of named Attack Detection and Localization Scheme to detect and localize the identity based attacks. An improved algorithm for hashing has been proposed. We named it as Effective Hashing Technique (EHT).It generates the Hash keys to differentiate an attacker from a normal node and to reduce the occurrences of any false positives or negatives. Also, our localization algorithm efficiently finds out the position estimates for the nodes

    Improved trilateration for indoor localization: Neural network and centroid-based approach

    Full text link
    [EN] Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network-based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network-based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm.Jondhale, SR.; Jondhale, AS.; Deshpande, PS.; Lloret, J. (2021). Improved trilateration for indoor localization: Neural network and centroid-based approach. International Journal of Distributed Sensor Networks (Online). 17(11):1-14. https://doi.org/10.1177/15501477211053997114171

    Development an accurate and stable range-free localization scheme for anisotropic wireless sensor networks

    Get PDF
    With the high-speed development of wireless radio technology, numerous sensor nodes are integrated into wireless sensor networks, which has promoted plentiful location-based applications that are successfully applied in various fields, such as monitoring natural disasters and post-disaster rescue. Location information is an integral part of wireless sensor networks, without location information, all received data will lose meaning. However, the current localization scheme is based on equipped GPS on every node, which is not cost-efficient and not suitable for large-scale wireless sensor networks and outdoor environments. To address this problem, research scholars have proposed a rangefree localization scheme which only depends on network connectivity. Nevertheless, as the representative range-free localization scheme, Distance Vector-Hop (DV-Hop) localization algorithm demonstrates extremely poor localization accuracy under anisotropic wireless sensor networks. The previous works assumed that the network environment is evenly and uniformly distributed, ignored anisotropic factors in a real setting. Besides, most research academics improved the localization accuracy to a certain degree, but at expense of high communication overhead and computational complexity, which cannot meet the requirements of high-precision applications for anisotropic wireless sensor networks. Hence, finding a fast, accurate, and strong solution to solve the range-free localization problem is still a big challenge. Accordingly, this study aspires to bridge the research gap by exploring a new DV-Hop algorithm to build a fast, costefficient, strong range-free localization scheme. This study developed an optimized variation of the DV-Hop localization algorithm for anisotropic wireless sensor networks. To address the poor localization accuracy problem in irregular C-shaped network topology, it adopts an efficient Grew Wolf Optimizer instead of the least-squares method. The dynamic communication range is introduced to refine hop between anchor nodes, and new parameters are recommended to optimize network protocol to balance energy cost in the initial step. Besides, the weighted coefficient and centroid algorithm is employed to reduce cumulative error by hop count and cut down computational complexity. The developed localization framework is separately validated and evaluated each optimized step under various evaluation criteria, in terms of accuracy, stability, and cost, etc. The results of EGWO-DV-Hop demonstrated superior localization accuracy under both topologies, the average localization error dropped up to 87.79% comparing with basic DV-Hop under C-shaped topology. The developed enhanced DWGWO-DVHop localization algorithm illustrated a favorable result with high accuracy and strong stability. The overall localization error is around 1.5m under C-shaped topology, while the traditional DV-Hop algorithm is large than 20m. Generally, the average localization error went down up to 93.35%, compared with DV-Hop. The localization accuracy and robustness of comparison indicated that the developed DWGWO-DV-Hop algorithm super outperforms the other classical range-free methods. It has the potential significance to be guided and applied in practical location-based applications for anisotropic wireless sensor networks

    Improved Correction Localization Algorithm Based on Dynamic Weighted Centroid for Wireless Sensor Networks

    Get PDF
    Abstract: For wireless sensor network applications that require location information for sensor nodes, locations of nodes can be estimated by a number of localization algorithms. However, precise location information may be unavailable due to the constraint in energy, computation, or terrain. An improved correction localization algorithm based on dynamic weighted centroid for wireless sensor networks was proposed in this paper. The idea is that each anchor node computes its position error through its neighbor anchor nodes in its range, the position error will be transform to distance error, according the distance between unknown node and anchor node and the anchor node's distance error, the dynamic weighted value will be computed. For each unknown node, it can use the coordinate of anchor node in its range and the dynamic weighted value to compute it's coordinate. Simulation results show that the localization accuracy of the proposed algorithm is better than the traditional centroid localization algorithm and weighted centroid localization algorithm, the position error of three algorithms is decreased along radius increasing, where the decreased trend of our algorithm is significant

    Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    Get PDF
    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines

    Locating sensors with fuzzy logic algorithms

    Get PDF
    In a system formed by hundreds of sensors deployed in a huge area it is important to know the position where every sensor is. This information can be obtained using several methods. However, if the number of sensors is high and the deployment is based on ad-hoc manner, some auto-locating techniques must be implemented. In this paper we describe a novel algorithm based on fuzzy logic with the objective of estimating the location of sensors according to the knowledge of the position of some reference nodes. This algorithm, called LIS (Localization based on Intelligent Sensors) is executed distributively along a wireless sensor network formed by hundreds of nodes, covering a huge area. The evaluation of LIS is led by simulation tests. The result obtained shows that LIS is a promising method that can easily solve the problem of knowing where the sensors are located.Junta de Andalucía P07-TIC-0247
    corecore