6,115 research outputs found

    SQL Injection Detection Using Machine Learning Techniques and Multiple Data Sources

    Get PDF
    SQL Injection continues to be one of the most damaging security exploits in terms of personal information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much current research involves the use of machine learning techniques, which are able to detect unknown attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current intrusion detection strategies involve collection of traffic coming into the web application either from a network device or from the web application host, while other strategies collect data from the database server logs. In this project, we are collecting traffic from two points: the web application host, and a Datiphy appliance node located between the webapp host and the associated MySQL database server. In our analysis of these two datasets, and another dataset that is correlated between the two, we have been able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-based and decision tree are nearly the same as those with a neural network algorithm, but with greatly improved performance

    Algorithm Selection Framework for Cyber Attack Detection

    Full text link
    The number of cyber threats against both wired and wireless computer systems and other components of the Internet of Things continues to increase annually. In this work, an algorithm selection framework is employed on the NSL-KDD data set and a novel paradigm of machine learning taxonomy is presented. The framework uses a combination of user input and meta-features to select the best algorithm to detect cyber attacks on a network. Performance is compared between a rule-of-thumb strategy and a meta-learning strategy. The framework removes the conjecture of the common trial-and-error algorithm selection method. The framework recommends five algorithms from the taxonomy. Both strategies recommend a high-performing algorithm, though not the best performing. The work demonstrates the close connectedness between algorithm selection and the taxonomy for which it is premised.Comment: 6 pages, 7 figures, 1 table, accepted to WiseML '2

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41
    corecore