500 research outputs found

    Distributing Tourists Among POIs with an Adaptive Trip Recommendation System

    Get PDF
    Traveling is part of many people leisure activities and an increasing fraction of the economy comes from the tourism. Given a destination, the information about the different attractions, or points of interest (POIs), can be found on many sources. Among these attractions, finding the ones that could be of interest for a specific user represents a challenging task. Travel recommendation systems deal with this type of problems. Most of the solution in the literature does not take into account the impact of the suggestions on the level of crowding of POIs. This paper considers the trip planning problem focusing on user balancing among the different POIs. To this aim, we consider the effects of the previous recommendations, as well as estimates based on historical data, while devising a new recommendation. The problem is formulated as a multi-objective optimization problem, and a recommendation engine has been designed and implemented for exploring the solution space in near real-time, through a distributed version of the Simulated Annealing approach. We test our solution using a real dataset of users visiting the POIs of a touristic city, and we show that we are able to provide high quality recommendations, yet maintaining the attractions not overcrowded

    Some Contribution of Statistical Techniques in Big Data: A Review

    Get PDF
    Big Data is a popular topic in research work. Everyone is talking about big data, and it is believed that science, business, industry, government, society etc. will undergo a through change with the impact of big data.Big data is used to refer to very huge data set having large, more complex, hidden pattern, structured and unstructured nature of data with the difficulties to collect, storage, analysing for process or result. So proper advanced techniques to use to gain knowledge about big data. In big data research big challenge is created in storage, process, search, sharing, transfer, analysis and visualizing. To deeply discuss on introduction of big data, issue, management and all used big data techniques. Also in this paper present a review of various advanced statistical techniques to handling the key application of big data have large data set. These advanced techniques handle the structure as well as unstructured big data in different area

    BetterLife 2.0: large-scale social intelligence reasoning on cloud

    Get PDF
    This paper presents the design of the BetterLife 2.0 framework, which facilitates implementation of large-scale social intelligence application in cloud environment. We argued that more and more mobile social applications in pervasive computing need to be implemented this way, with a lot of user generated activities in social networking websites. We adopted the Case-based Reasoning technique to provide logical reasoning and outlined design considerations when porting a typical CBR framework jCOLIBRI2 to cloud, using Hadoop's various services (HDFS, HBase). These services allow efficient case base management (e.g. case insertion) and distribution of computational intensive jobs to speed up reasoning process more than 5 times. With the scalability merit of MapReduce, we can improve recommendation service with social network analysis that needs to handle millions of users' social activities. © 2010 IEEE.published_or_final_versionThe 2nd IEEE International Conference on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, IN., 30 November-3 December 2010. In Proceedings of the 2nd CloudCom, 2010, p. 529-53

    Enabling Scalability: Graph Hierarchies and Fault Tolerance

    Get PDF
    In this dissertation, we explore approaches to two techniques for building scalable algorithms. First, we look at different graph problems. We show how to exploit the input graph\u27s inherent hierarchy for scalable graph algorithms. The second technique takes a step back from concrete algorithmic problems. Here, we consider the case of node failures in large distributed systems and present techniques to quickly recover from these. In the first part of the dissertation, we investigate how hierarchies in graphs can be used to scale algorithms to large inputs. We develop algorithms for three graph problems based on two approaches to build hierarchies. The first approach reduces instance sizes for NP-hard problems by applying so-called reduction rules. These rules can be applied in polynomial time. They either find parts of the input that can be solved in polynomial time, or they identify structures that can be contracted (reduced) into smaller structures without loss of information for the specific problem. After solving the reduced instance using an exponential-time algorithm, these previously contracted structures can be uncontracted to obtain an exact solution for the original input. In addition to a simple preprocessing procedure, reduction rules can also be used in branch-and-reduce algorithms where they are successively applied after each branching step to build a hierarchy of problem kernels of increasing computational hardness. We develop reduction-based algorithms for the classical NP-hard problems Maximum Independent Set and Maximum Cut. The second approach is used for route planning in road networks where we build a hierarchy of road segments based on their importance for long distance shortest paths. By only considering important road segments when we are far away from the source and destination, we can substantially speed up shortest path queries. In the second part of this dissertation, we take a step back from concrete graph problems and look at more general problems in high performance computing (HPC). Here, due to the ever increasing size and complexity of HPC clusters, we expect hardware and software failures to become more common in massively parallel computations. We present two techniques for applications to recover from failures and resume computation. Both techniques are based on in-memory storage of redundant information and a data distribution that enables fast recovery. The first technique can be used for general purpose distributed processing frameworks: We identify data that is redundantly available on multiple machines and only introduce additional work for the remaining data that is only available on one machine. The second technique is a checkpointing library engineered for fast recovery using a data distribution method that achieves balanced communication loads. Both our techniques have in common that they work in settings where computation after a failure is continued with less machines than before. This is in contrast to many previous approaches that---in particular for checkpointing---focus on systems that keep spare resources available to replace failed machines. Overall, we present different techniques that enable scalable algorithms. While some of these techniques are specific to graph problems, we also present tools for fault tolerant algorithms and applications in a distributed setting. To show that those can be helpful in many different domains, we evaluate them for graph problems and other applications like phylogenetic tree inference

    Big Data Computing for Geospatial Applications

    Get PDF
    The convergence of big data and geospatial computing has brought forth challenges and opportunities to Geographic Information Science with regard to geospatial data management, processing, analysis, modeling, and visualization. This book highlights recent advancements in integrating new computing approaches, spatial methods, and data management strategies to tackle geospatial big data challenges and meanwhile demonstrates opportunities for using big data for geospatial applications. Crucial to the advancements highlighted in this book is the integration of computational thinking and spatial thinking and the transformation of abstract ideas and models to concrete data structures and algorithms

    Actes de la conférence BDA 2014 : Gestion de données - principes, technologies et applications

    No full text
    International audienceActes de la conférence BDA 2014 Conférence soutenue par l'Université Joseph Fourier, Grenoble INP, le CNRS et le laboratoire LIG. Site de la conférence : http://bda2014.imag.fr Actes en ligne : https://hal.inria.fr/BDA201

    Big Data Now, 2015 Edition

    Get PDF
    Now in its fifth year, O’Reilly’s annual Big Data Now report recaps the trends, tools, applications, and forecasts we’ve talked about over the past year. For 2015, we’ve included a collection of blog posts, authored by leading thinkers and experts in the field, that reflect a unique set of themes we’ve identified as gaining significant attention and traction. Our list of 2015 topics include: Data-driven cultures Data science Data pipelines Big data architecture and infrastructure The Internet of Things and real time Applications of big data Security, ethics, and governance Is your organization on the right track? Get a hold of this free report now and stay in tune with the latest significant developments in big data

    Privacy and trustworthiness management in moving object environments

    Get PDF
    The use of location-based services (LBS) (e.g., Intel\u27s Thing Finder) is expanding. Besides the traditional centralized location-based services, distributed ones are also emerging due to the development of Vehicular Ad-hoc Networks (VANETs), a dynamic network which allows vehicles to communicate with one another. Due to the nature of the need of tracking users\u27 locations, LBS have raised increasing concerns on users\u27 location privacy. Although many research has been carried out for users to submit their locations anonymously, the collected anonymous location data may still be mapped to individuals when the adversary has related background knowledge. To improve location privacy, in this dissertation, the problem of anonymizing the collected location datasets is addressed so that they can be published for public use without violating any privacy concerns. Specifically, a privacy-preserving trajectory publishing algorithm is proposed that preserves high data utility rate. Moreover, the scalability issue is tackled in the case the location datasets grows gigantically due to continuous data collection as well as increase of LBS users by developing a distributed version of our trajectory publishing algorithm which leveraging the MapReduce technique. As a consequence of users being anonymous, it becomes more challenging to evaluate the trustworthiness of messages disseminated by anonymous users. Existing research efforts are mainly focused on privacy-preserving authentication of users which helps in tracing malicious vehicles only after the damage is done. However, it is still not sufficient to prevent malicious behavior from happening in the case where attackers do not care whether they are caught later on. Therefore, it would be more effective to also evaluate the content of the message. In this dissertation, a novel information-oriented trustworthiness evaluation is presented which enables each individual user to evaluate the message content and make informed decisions --Abstract, page iii
    • …
    corecore