34 research outputs found

    Robust Optimal Control Strategies for a Hybrid Fuel Cell Power Management System

    Get PDF
    International audienceAbstract--In this paper several optimal control strategies are proposed for the power management subsystem of a hybrid fuel cell/supercapacitor power generation system. The control strategies are based on different control configurations involving the power converters associated to the hybrid source. Given certain desired performances, Linear Matrix Inequalities methods are used to solve the controller design problem that is written as an optimization problem with inequalities constraints. The solution to the optimization problem yields a simple PID controller with H∞ desired performance. For the several control strategies proposed, robustness is a primary issue. Time simulations and robustness analysis shows the effectiveness of the proposed strategies when compared with the classic control strategies used for this type of hybrid power generation system

    On the Robust Control of DC-DC Converters: Application to a Hybrid Power Generation System

    Get PDF
    International audienceIn this paper a complete robust control synthesis is performed for a hybrid power generation structure composed by a Fuel Cell and a Supercapacitor. The control strategies are applied to the DC-DC boost power converters associated to each power source. Multivariable PI control with H∞ performance, H∞ full and reduced order controllers are designed and compared. The multivariable PI controller is designed through an optimization procedure based on solving some Linear Matrix Inequalities. A μ-analysis and frequency/time response performances results shows the advantages of the different proposed control strategies

    MULTIVARIABLE PID CONTROL VIA ILMIs: PERFORMANCES ASSESSMENT

    Full text link

    Robust Control Analysis using Real-Time Implementation of a Hybrid Fuel Cell Power Generation System

    Get PDF
    International audienceIn this paper a complete robustness analysis is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through the control of two identical boost power converters. For the closed-loop control a previously proposed multivariable robust control is considered. The robust control strategy analyzed consists of a multivariable Proportional-Integral controller found using an algorithm with a Linear Matrix Inequalities (LMI) formulation proposed by the authors in former works. The control actuators are the duty cycles of the boost power converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load. The control effectively achieves stability and performance robustness for several considered parameter variations sets. Simulation results were obtained using µ-analysis theory and the experimental validation was achieved. The results obtained show the improvement of the system robustness with a strategy that can be generalized as a robust control methodology

    A Survey of Decentralized Adaptive Control

    Get PDF

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Stability Analysis and Robust Controller Design of Indirect Vector Controlled Induction Motor

    Get PDF
    The thesis considers stability analysis and controller design through different performance measures for indirect vector controlled induction motor (IVCIM).These problems are known to be complex due to nonlinearity, large order and multi-loop scenario. Some new approaches and results on IVCIM are proposed in this work. IVCIM dynamics is well known for having different bifurcation behavior, viz., saddle-node, Hopf, Bogdanov–Takens and Zero–Hopf bifurcations due to rotor resistance variation. These bifurcations affect the control performance and may lead to stalling or permanent damage of motor. A numerical analysis of these bifurcations for proportional integral (PI) controlled IVCIM is made in this thesis using full-order induction motor model (stator dynamics is included). This analysis aids to determine the allowable bifurcation parameter variation range as well as suitable choice of speed-loop gains to avoid these. Some new observations on the bifurcation behavior are made. Simulation and experimental results are presented validating the bifurcation behaviors. For improving dynamic performance in the presence of load torque and rotor resistance variation, a new method for designing PI gains is proposed for IVCIM. The inner-loop current PI controllers are tuned simultaneously along with the speed controller. This method is implemented using a static output feedback scheme in which iterative linear matrix inequality (ILMI) based∞control technique is employed. Such a design makes stator currents and speed response to be robust against rotor resistance and load variations. A comparison between proposed design and a conventional one is shown using simulation and experimental results that validate the superiority of the proposed approach. Owing to multi-loop and nonlinear system behavior, IVCIM dynamics is known to have coupling in between the two inner-loop stator current components (flux and torque). Such coupling affects the dynamic torque output of the motor. Decoupling of the stator currents are important for smoother torque response of IVCIM. Conventionally, additional feedforward decoupler is used to take care of the coupling that requires exact knowledge of the motor parameters and additional circuitry or signal processing. A method is proposed to design the regulating PI gains while minimizing coupling without any requirement of additional decoupler. The variation of the coupling terms for change in load torque is considered as the performance measure. The same ILMI based∞control design approach is used to obtain the controller gains. A comparison between the conventional feedforward decoupling and proposed decoupling scheme is presented through simulation and experimental results that establish the effectiveness of the proposed method riding over its simplicity. Finally, since the PI controller can yield limited performance, a dynamic controller is designed for the IVCIM drive system. In the design process, iron-loss dynamics are incorporated into induction motor model to fetch benefit through better performance. A sequential design method is used for the controller design in which, first, the inner-loop controllers are designed. The designed inner-loop controllers is then used for designing the outer speed-loop controller. The proposed design employs ILMI based∞control design for dynamic output feedback controller that makes stator currents and speed response to be robust against disturbances. A comparison among proposed dynamic controller design, PI controller and compensator design is shown using simulation and experimental results demonstrate enhanced performance of the proposed controller and suitability for industrial purpose

    An Improved LMI Approach for Static Output Feedback Fault-tolerant Control With Application to Flight Tracking Control

    Get PDF
    Abstract-This paper proposes an improved Linear Matrix Inequality (LMI) approach for the synthesis of Static Output Feedback (SOF) Fault-Tolerant Control (FTC). A novel slack variable is introduced into the matrix inequalities, which provides an additional degree of freedom to compute the numerical solution. Subsequently, an improved iterative algorithm is developed to obtain an optimal SOF gain with less conservativeness. In this paper, designs of the SOF gain are shown in the framework of tracking control. The nonlinear simulations of the ADMIRE aircraft are included to demonstrate the effectiveness of the proposed method

    An Improved LMI Approach for Static Output Feedback Fault-tolerant Control With Application to Flight Tracking Control

    Get PDF
    Abstract-This paper proposes an improved Linear Matrix Inequality (LMI) approach for the synthesis of Static Output Feedback (SOF) Fault-Tolerant Control (FTC). A novel slack variable is introduced into the matrix inequalities, which provides an additional degree of freedom to compute the numerical solution. Subsequently, an improved iterative algorithm is developed to obtain an optimal SOF gain with less conservativeness. In this paper, designs of the SOF gain are shown in the framework of tracking control. The nonlinear simulations of the ADMIRE aircraft are included to demonstrate the effectiveness of the proposed method
    corecore