5 research outputs found

    An Improved Hazard Rate Twisting Approach for the Statistic of the Sum of Subexponential Variates

    Get PDF
    In this letter, we present an improved hazard rate twisting technique for the estimation of the probability that a sum of independent but not necessarily identically distributed subexponential Random Variables (RVs) exceeds a given threshold. Instead of twisting all the components in the summation, we propose to twist only the RVs which have the biggest impact on the right-tail of the sum distribution and keep the other RVs unchanged. A minmax approach is performed to determine the optimal twisting parameter which leads to an asymptotic optimality criterion. Moreover, we show through some selected simulation results that our proposed approach results in a variance reduction compared to the technique where all the components are twisted

    A review of conditional rare event simulation for tail probabilities of heavy tailed random variables

    Get PDF
    Approximating the tail probability of a sum of heavy-tailed random variables is a difficult problem. In this review we exhibit the challenges of approximating such probabilities and concentrate on a rare event simulation methodology capable of delivering the most reliable results: Conditional Monte Carlo. To provide a better flavor of this topic we further specialize on two algorithms which were specifically designed for tackling this problem: the Asmussen-Binswanger estimator and the Asmussen-Kroese estimator. We extend the applicability of these estimators to the non-independent case and prove their efficiency

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore