31,769 research outputs found

    Automatic Foreground Initialization for Binary Image Segmentation

    Get PDF
    Foreground segmentation is a fundamental problem in computer vision. A popular approach for foreground extraction is through graph cuts in energy minimization framework. Most existing graph cuts based image segmentation algorithms rely on user’s initialization. In this work, we aim to find an automatic initialization for graph cuts. Unlike many previous methods, no additional training dataset is needed. Collecting a training set is not only expensive and time consuming, but it also may bias the algorithm to the particular data distribution of the collected dataset. We assume that the foreground differs significantly from the background in some unknown feature space and try to find the rectangle that is most different from the rest of the image by measuring histograms dissimilarity. We extract multiple features, design a ranking function to select good features, and compute histograms based on integral images. The standard graph cuts binary segmentation is applied, based on the color models learned from the initial rectangular segmentation. Then the steps of refining the color models and re-segmenting the image iterate in the grabcut manner, until convergence, which is guaranteed. The foreground detection algorithm performs well and the segmentation is further improved by graph cuts. We evaluate our method on three datasets with manually labelled foreground regions, and show that we reach the similar level of accuracy compared to previous work. Our approach, however, has an advantage over the previous work that we do not require a training dataset

    COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation

    Full text link
    The absence of large scale datasets with pixel-level supervisions is a significant obstacle for the training of deep convolutional networks for scene text segmentation. For this reason, synthetic data generation is normally employed to enlarge the training dataset. Nonetheless, synthetic data cannot reproduce the complexity and variability of natural images. In this paper, a weakly supervised learning approach is used to reduce the shift between training on real and synthetic data. Pixel-level supervisions for a text detection dataset (i.e. where only bounding-box annotations are available) are generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which provides pixel-level supervisions for the COCO-Text dataset, is created and released. The generated annotations are used to train a deep convolutional neural network for semantic segmentation. Experiments show that the proposed dataset can be used instead of synthetic data, allowing us to use only a fraction of the training samples and significantly improving the performances

    Multispectral object segmentation and retrieval in surveillance video

    Get PDF
    This paper describes a system for object segmentation and feature extraction for surveillance video. Segmentation is performed by a dynamic vision system that fuses information from thermal infrared video with standard CCTV video in order to detect and track objects. Separate background modelling in each modality and dynamic mutual information based thresholding are used to provide initial foreground candidates for tracking. The belief in the validity of these candidates is ascertained using knowledge of foreground pixels and temporal linking of candidates. The transferable belief model is used to combine these sources of information and segment objects. Extracted objects are subsequently tracked using adaptive thermo-visual appearance models. In order to facilitate search and classification of objects in large archives, retrieval features from both modalities are extracted for tracked objects. Overall system performance is demonstrated in a simple retrieval scenari
    corecore