2 research outputs found

    Framework for progressive segmentation of chest radiograph for efficient diagnosis of inert regions

    Get PDF
    Segmentation is one of the most essential steps required to identify the inert object in the chest x-ray. A review with the existing segmentation techniques towards chest x-ray as well as other vital organs was performed. The main objective was to find whether existing system offers accuracy at the cost of recursive and complex operations. The proposed system contributes to introduce a framework that can offer a good balance between computational performance and segmentation performance. Given an input of chest x-ray, the system offers progressive search for similar image on the basis of similarity score with queried image. Region-based shape descriptor is applied for extracting the feature exclusively for identifying the lung region from the thoracic region followed by contour adjustment. The final segmentation outcome shows accurate identification followed by segmentation of apical and costophrenic region of lung. Comparative analysis proved that proposed system offers better segmentation performance in contrast to existing system

    An Improved FCM Medical Image Segmentation Algorithm Based on MMTD

    No full text
    Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD) and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation
    corecore