182 research outputs found

    Introducing a New Evaluation Criteria for EMD-Base Steganography Method

    Full text link
    Steganography is a technique to hide the presence of secret communication. When one of the communication elements is under the influence of the enemy, it can be used. The main measure to evaluate steganography methods in a certain capacity is security. Therefore, in a certain capacity, reducing the amount of changes in the cover media, creates a higher embedding efficiency and thus more security of an steganography method. Mostly, security and capacity are in conflict with each other, the increase of one lead to the decrease of the other. The presence of a single criterion that represents security and capacity at the same time be useful in comparing steganography methods. EMD and the relevant methods are a group of steganography techniques, which optimize the amount of changes resulting from embedding (security). The present paper is aimed to provide an evaluation criterion for this group of steganography methods. In this study, after a general review and comparison of EMD-based steganography techniques, we present a method to compare them exactly, from the perspective of embedding efficiency. First, a formula is presented to determine the value of embedding efficiency, which indicates the effect of one or more changes on one or more pixels. The results demonstrate that the proposed embedding efficiency formula shows the performance of the methods better when several changes are made on a pixel compared to the existing criteria. In the second step, we have obtained an upper bound, which determines the best efficiency for each certain capacity. Finally, based on the introduced bound, another evaluation criterion for a better comparison of the methods is presented

    A Brief Review of RIDH

    Get PDF
    The Reversible image data hiding (RIDH) is one of the novel approaches in the security field. In the highly sensitive domains like Medical, Military, Research labs, it is important to recover the cover image successfully, Hence, without applying the normal steganography, we can use RIDH to get the better result. Reversible data hiding has a advantage over image data hiding that it can give you double security surely

    A review on structured scheme representation on data security application

    Get PDF
    With the rapid development in the era of Internet and networking technology, there is always a requirement to improve the security systems, which secure the transmitted data over an unsecured channel. The needs to increase the level of security in transferring the data always become the critical issue. Therefore, data security is a significant area in covering the issue of security, which refers to protect the data from unwanted forces and prevent unauthorized access to a communication. This paper presents a review of structured-scheme representation for data security application. There are five structured-scheme types, which can be represented as dual-scheme, triple-scheme, quad-scheme, octal-scheme and hexa-scheme. These structured-scheme types are designed to improve and strengthen the security of data on the application

    Conditional Entrench Spatial Domain Steganography

    Get PDF
    Steganography is a technique of concealing the secret information in a digital carrier media, so that only the authorized recipient can detect the presence of secret information. In this paper, we propose a spatial domain steganography method for embedding secret information on conditional basis using 1-Bit of Most Significant Bit (MSB). The cover image is decomposed into blocks of 8*8 matrix size. The first block of cover image is embedded with 8 bits of upper bound and lower bound values required for retrieving payload at the destination. The mean of median values and difference between consecutive pixels of each 8*8 block of cover image is determined to embed payload in 3 bits of Least Significant Bit (LSB) and 1 bit of MSB based on prefixed conditions. It is observed that the capacity and security is improved compared to the existing methods with reasonable PSNR

    Performance evaluation measurement of image steganography techniques with analysis of LSB based on variation image formats

    Get PDF
    Recently, Steganography is an outstanding research area which used for data protection from unauthorized access. Steganography is defined as the art and science of covert information in plain sight in various media sources such as text, images, audio, video, network channel etc. so, as to not stimulate any suspicion; while steganalysis is the science of attacking the steganographic system to reveal the secret message. This research clarifies the diverse showing the evaluation factors based on image steganographic algorithms. The effectiveness of a steganographic is rated to three main parameters, payload capacity, image quality measure and security measure. This study is focused on image steganographic which is most popular in in steganographic branches. Generally, the Least significant bit is major efficient approach utilized to embed the secret message. In addition, this paper has more detail knowledge based on Least significant bit LSB within various Images formats. All metrics are illustrated in this study with arithmetical equations while some important trends are discussed also at the end of the paper

    A review and open issues of multifarious image steganography techniques in spatial domain

    Get PDF
    Nowadays, information hiding is becoming a helpful technique and fetch more attention due fast growth of using internet, it is applied for sending secret information by using different techniques. Steganography is one of major important technique in information hiding. Steganography is science of concealing the secure information within a carrier object to provide the secure communication though the internet, so that no one can recognize and detect it’s except the sender & receiver. In steganography, many various carrier formats can be used such as an image, video, protocol, audio. The digital image is most popular used as a carrier file due its frequency on internet. There are many techniques variable for image steganography, each has own strong and weak points. In this study, we conducted a review of image steganography in spatial domain to explore the term image steganography by reviewing, collecting, synthesizing and analyze the challenges of different studies which related to this area published from 2014 to 2017. The aims of this review is provides an overview of image steganography and comparison between approved studies are discussed according to the pixel selection, payload capacity and embedding algorithm to open important research issues in the future works and obtain a robust method

    An Efficient Light-weight LSB steganography with Deep learning Steganalysis

    Full text link
    Active research is going on to securely transmit a secret message or so-called steganography by using data-hiding techniques in digital images. After assessing the state-of-the-art research work, we found, most of the existing solutions are not promising and are ineffective against machine learning-based steganalysis. In this paper, a lightweight steganography scheme is presented through graphical key embedding and obfuscation of data through encryption. By keeping a mindset of industrial applicability, to show the effectiveness of the proposed scheme, we emphasized mainly deep learning-based steganalysis. The proposed steganography algorithm containing two schemes withstands not only statistical pattern recognizers but also machine learning steganalysis through feature extraction using a well-known pre-trained deep learning network Xception. We provided a detailed protocol of the algorithm for different scenarios and implementation details. Furthermore, different performance metrics are also evaluated with statistical and machine learning performance analysis. The results were quite impressive with respect to the state of the arts. We received 2.55% accuracy through statistical steganalysis and machine learning steganalysis gave maximum of 49.93~50% correctly classified instances in good condition.Comment: Accepted pape

    AN ASYMPTOTICALLY UNIFORMLY REVERSIBLE DATA HIDING IN ENCRYPTED IMAGES BY PIXEL PAIR MATCHING TECHNIQUES

    Get PDF
    The reversible data hiding (RDH) in encrypted images, since it maintains the excellent property that the original cover can be losslessly recovered after embedded data is extracted while protecting the image content’s confidentiality. All previous methods embed data by reversibly vacating room from the encrypted images, which may be subject to some errors on data extraction and/or image restoration. A novel method called pixel pair matching which has the advantage of inserting the data without changing the image content, and thus it is easy for the data hider to reversibly embed data in the encrypted image. The proposed method can achieve real reversibility, ie. data extraction and image recovery are free of any error. The distortion caused by data embedding is called the embedding distortion. A good data-hiding method should be capable of evading visual and statistical detection while providing an adjustable payload. The LSB method employ one pixel as an embedding unit, and conceal data into the right-most LSBs.To achieve satisfactory hiding capacity Exploiting modification direction (EMD) and Diamond Encoding (DE) are two data-hiding methods proposed recently based on PPM. The maximum capacity of EMD is 1.161 bpp and DE extends the payload of EMD by embedding digits in a larger notational system. This method offers lower distortion than DE by providing more compact neighborhood sets and allowing embedded digits in any notational system. Data-hiding method based on PPM.DE greatly enhances the payload of EMD while preserving acceptable stego image quality. The image preprocessing  and binary operation of  two pixels are scanned as an embedding unit and a specially designed neighborhood set is employed to embed message digits with a smallest notational system. PPM allows users to select digits in any notational system for data embedding, and thus achieves a better image quality

    Dual-image-based reversible data hiding scheme with integrity verification using exploiting modification direction

    Get PDF
    Abstract(#br)In this paper, a novel dual-image-based reversible data hiding scheme using exploiting modification direction (EMD) is proposed. This scheme embeds two 5-base secret digits into each pixel pair of the cover image simultaneously according to the EMD matrix to generate two stego-pixel pairs. By shifting these stego-pixel pairs to the appropriate locations in some cases, two meaningful shadows are produced. The secret data can be extracted accurately, and the cover image can be reconstructed completely in the data extraction and the image reconstruction procedure, respectively. Experimental results show that our scheme outperforms the comparative methods in terms of image quality and embedding ratio. Pixel-value differencing (PVD) histogram analysis reveals that our scheme..

    Data hiding techniques in steganography using fibonacci sequence and knight tour algorithm

    Get PDF
    The foremost priority in the information and communication technology era, is achieving an efficient and accurate steganography system for hiding information. The developed system of hiding the secret message must capable of not giving any clue to the adversaries about the hidden data. In this regard, enhancing the security and capacity by maintaining the Peak Signal-to-Noise Ratio (PSNR) of the steganography system is the main issue to be addressed. This study proposed an improved for embedding secret message into an image. This newly developed method is demonstrated to increase the security and capacity to resolve the existing problems. A binary text image is used to represent the secret message instead of normal text. Three stages implementations are used to select the pixel before random embedding to select block of (64 × 64) pixels, follows by the Knight Tour algorithm to select sub-block of (8 × 8) pixels, and finally by the random pixels selection. For secret embedding, Fibonacci sequence is implemented to decomposition pixel from 8 bitplane to 12 bitplane. The proposed method is distributed over the entire image to maintain high level of security against any kind of attack. Gray images from the standard dataset (USC-SIPI) including Lena, Peppers, Baboon, and Cameraman are implemented for benchmarking. The results show good PSNR value with high capacity and these findings verified the worthiness of the proposed method. High complexities of pixels distribution and replacement of bits will ensure better security and robust imperceptibility compared to the existing systems in the literature
    corecore