756 research outputs found

    Mixture extreme learning machine algorithm for robust regression

    Get PDF
    The extreme learning machine (ELM) is a well-known approach for training single hidden layer feedforward neural networks (SLFNs) in machine learning. However, ELM is most effective when used for regression on datasets with simple Gaussian distributed error because it often employs a squared loss in its objective function. In contrast, real-world data is often collected from unpredictable and diverse contexts, which may contain complex noise that cannot be characterized by a single distribution. To address this challenge, we propose a robust mixture ELM algorithm, called Mixture-ELM, that enhances modeling capability and resilience to both Gaussian and non-Gaussian noise. The Mixture-ELM algorithm uses an adjusted objective function that blends Gaussian and Laplacian distributions to approximate any continuous distribution and match the noise. The Gaussian mixture accurately models the residual distribution, while the inclusion of the Laplacian distribution addresses the limitations of the Gaussian distribution in identifying outliers. We derive a solution to the novel objective function using the expectation maximization (EM) and iteratively reweighted least squares (IRLS) algorithms. We evaluate the effectiveness of the algorithm through numerical simulation and experiments on benchmark datasets, thereby demonstrating its superiority over other state-of-the-art machine learning methods in terms of robustness and generalization

    Probabilistic and artificial intelligence modelling of drought and agricultural crop yield in Pakistan

    Get PDF
    Pakistan is a drought-prone, agricultural nation with hydro-meteorological imbalances that increase the scarcity of water resources, thus, constraining water availability and leading major risks to the agricultural productivity sector and food security. Rainfall and drought are imperative matters of consideration, both for hydrological and agricultural applications. The aim of this doctoral thesis is to advance new knowledge in designing hybridized probabilistic and artificial intelligence forecasts models for rainfall, drought and crop yield within the agricultural hubs in Pakistan. The choice of these study regions is a strategic decision, to focus on precision agriculture given the importance of rainfall and drought events on agricultural crops in socioeconomic activities of Pakistan. The outcomes of this PhD contribute to efficient modelling of seasonal rainfall, drought and crop yield to assist farmers and other stakeholders to promote more strategic decisions for better management of climate risk for agriculturalreliant nations

    ACCEPT: Introduction of the Adverse Condition and Critical Event Prediction Toolbox

    Get PDF
    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we introduce a generic framework developed in MATLAB (sup registered mark) called ACCEPT (Adverse Condition and Critical Event Prediction Toolbox). ACCEPT is an architectural framework designed to compare and contrast the performance of a variety of machine learning and early warning algorithms, and tests the capability of these algorithms to robustly predict the onset of adverse events in any time-series data generating systems or processes

    Application of machine learning to agricultural soil data

    Get PDF
    Agriculture is a major sector in the Indian economy. One key advantage of classification and prediction of soil parameters is to save time of specialized technicians developing expensive chemical analysis. In this context, this PhD thesis has been developed in three stages: 1. Classification for soil data: we used chemical soil measurements to classify many relevant soil parameters: village-wise fertility indices; soil pH and type; soil nutrients, in order to recommend suitable amounts of fertilizers; and preferable crop. 2. Regression for generic data: we developed an experimental comparison of many regressors to a large collection of generic datasets selected from the University of California at Irving (UCI) machine learning repository. 3. Regression for soil data: We applied the regressors used in stage 2 to the soil datasets, developing a direct prediction of their numeric values. The accuracy of the prediction was evaluated for the ten soil problems, as an alternative to the prediction of the quantified values (classification) developed in stage 1

    Machine learning in dam water research: an overview of applications and approaches

    Get PDF
    Dam plays a crucial role in water security. A sustainable dam intends to balance a range of resources involves within a dam operation. Among the factors to maintain sustainability is to maintain and manage the water assets in dams. Water asset management in dams includes a process to ensure the planned maintenance can be conducted and assets such as pipes, pumps and motors can be mended, substituted, or upgraded when needed within the allocated budgetary. Nowadays, most water asset management systems collect and process data for data analysis and decision-making. Machine learning (ML) is an emerging concept applied to fulfill the requirement in engineering applications such as dam water researches. ML can analyze vast volumes of data and through an ML model built from algorithms, ML can learn, recognize and produce accurate results and analysis. The result brings meaningful insights for water asset management specifically to strategize the optimal solution based on the forecast or prediction. For example, a preventive maintenance for replacing water assets according to the prediction from the ML model. We will discuss the approaches of machine learning in recent dam water research and review the emerging issues to manage water assets in dams in this paper
    • …
    corecore