65 research outputs found

    AUDIO PROCESSING ANALYZER

    Get PDF
    The project emphasizes simulation of various DSP effects using elementary phenomenon of audio processing, and by manipulating audio using various filters in order to enhance the quality. There are many commercially available systems, which provide facilities such as channel equalizers, karaoke systems, and a few audio processors based on Digital Signal Processing. Software systems are also available which provide a fairly good and cost effective solution to audio enhancement. Yet they are limited due to resources issues and thus make a trade-off between performance and quality. The project at first studies and analyses proceeds as study and analysis of audio processing phenomena and various effects involved in it. In the second phase algorithms have been developed for these phenomena and their simulation in MATLAB.

    A VLSI DSP DESIGN AND IMPLEMENTATION OF COMB FILTER USING UN-FOLDING METHODOLOGY

    Get PDF
    In signal processing, a comb filter adds a delayed version of a signal to itself, causing constructive and destructive interference. Comb filters are used in a variety of signal processing applications that is Cascaded Integrator-Comb filters, Audio effects, including echo, flanging, and digital waveguide synthesis and various other applications. Comb filter when implemented has lower through-put as the sample period can not be achieved equal to the iteration bound because node computation time of comb filter is larger than the iteration bound. Hence throughput remains less. This paper present the comb filter using one of the methodology needed to design custom or semi custom VLSI circuits named as Un-Folding which increases the throughput of the comb filter. Un-Folding is a transformation technique that can be applied to a DSP program to create a new program describing more than one iteration of the original program. It can unravel hidden con-currency in digital signal processing systems described by DFGs. Therefore, unfolding has been used for the sample period reduction of the comb filter for its higher throughput

    A review on micro-manufacturing, microforming and their key issues

    Get PDF
    Micro-manufacturing has received good attention globally in terms of its manufacturing methods/processes. One of the most popular micro-manufacturing processes is micro-forming. Many efforts have been focused on micro-forming, mainly on the micro-stamping process due to the process itself contributing numerous products, especially in its conventional macro-process. Most every-day products are made by this process. Although there were efforts made to realize micro-forming for industrial application, the technology itself was seen as being insufficiently mature. Much development work needed to be done, specifically to develop a fully-automated high-volume production micro-forming machine, which is reliable and at all times ready for operation in terms of it processes, tooling, and material-handling to ensure the successful production of micro-products. The paper addresses key issues encountered by researchers worldwide on both micro-manufacturing, specifically micro-forming

    Audio Mastering as a Musical Competency

    Get PDF
    In this dissertation, I demonstrate that audio mastering is a musical competency by elucidating the most significant, and clearly audible, facets of this competence. In fact, the mastering process impacts traditionally valued musical aspects of records, such as timbre and dynamics. By applying the emerging creative scholarship method used within the field of music production studies, this dissertation will aid scholars seeking to hear and understand audio mastering by elucidating its core practices as musical endeavours. And, in so doing, I hope to enable increased clarity and accuracy in future scholarly discussions on the topic of audio mastering, as well as the end product of the mastering process: records. Audio mastering produces a so-called master of a record, that is, a finished version of a record optimized for duplication and distribution via available formats (i.e, vinyl LP, audio cassette, compact disc, mp3, wav, and so on). This musical process plays a crucial role in determining how records finally sound, and it is not, as is so often inferred in research, the sole concern of a few technicians working in isolated rooms at a record label\u27s corporate headquarters. In fact, as Mark Cousins and Russ Hepworth-Sawyer (2013: 2) explain, nowadays “all musicians and engineers, to a lesser or greater extent, have to actively engage in the mastering process.” Thus, this dissertation clarifies the creative nature of audio mastering through an investigation of how mastering engineers hear records, and how they use technology to achieve the sonic goals they conceptualize

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed
    • …
    corecore