72,533 research outputs found

    Real-Time Prediction and Decision Making in Connected and Automated Vehicles Under Cyber-Security and Safety Uncertainties

    Get PDF
    Our current transportation system is on the brink of transforming into a highly connected,automated, and intelligent system as a result of the rapid emergence of connected andautomated vehicles (CAVs). CAVs, with various levels of automation, are expected toincrease overall road safety, reduce travel time, improve comfort, improve fuel efficiency, anddecrease fatal accidents in the near future. CAVs use a combination of cameras, ultrasonicsensors, and radar to build a digital map of their surroundings and operate the vehicleaccordingly. As a result, there are numerous sources of information that can be manipulated,with malicious or non-malicious intent, which may result in dangerous situations. Althoughthe ever-increasing use of CAV technologies in vehicles are expected to have numerousadvantages, they can give rise to new challenges in terms of safety, security, and privacy.As evident by recent crash records and experiments successfully conducting cyber attacks onvehicles, the currently available autonomous systems lack the ability to fully handle novel,complex situations. Hence, the potential drawbacks of CAVs are not negligible and shouldnot be ignored. In this study, we investigate the real-time prediction and decision makingin CAVs under cyber-security and safety uncertainties

    An Improved Deep Learning Model for Traffic Crash Prediction

    Get PDF
    Machine-learning technology powers many aspects of modern society. Compared to the conventional machine learning techniques that were limited in processing natural data in the raw form, deep learning allows computational models to learn representations of data with multiple levels of abstraction. In this study, an improved deep learning model is proposed to explore the complex interactions among roadways, traffic, environmental elements, and traffic crashes. The proposed model includes two modules, an unsupervised feature learning module to identify functional network between the explanatory variables and the feature representations and a supervised fine tuning module to perform traffic crash prediction. To address the unobserved heterogeneity issues in the traffic crash prediction, a multivariate negative binomial (MVNB) model is embedding into the supervised fine tuning module as a regression layer. The proposed model was applied to the dataset that was collected from Knox County in Tennessee to validate the performances. The results indicate that the feature learning module identifies relational information between the explanatory variables and the feature representations, which reduces the dimensionality of the input and preserves the original information. The proposed model that includes the MVNB regression layer in the supervised fine tuning module can better account for differential distribution patterns in traffic crashes across injury severities and provides superior traffic crash predictions. The findings suggest that the proposed model is a superior alternative for traffic crash predictions and the average accuracy of the prediction that was measured by RMSD can be improved by 84.58% and 158.27% compared to the deep learning model without the regression layer and the SVM model, respectively. Document type: Articl

    An active inference model of car following: Advantages and applications

    Full text link
    Driver process models play a central role in the testing, verification, and development of automated and autonomous vehicle technologies. Prior models developed from control theory and physics-based rules are limited in automated vehicle applications due to their restricted behavioral repertoire. Data-driven machine learning models are more capable than rule-based models but are limited by the need for large training datasets and their lack of interpretability, i.e., an understandable link between input data and output behaviors. We propose a novel car following modeling approach using active inference, which has comparable behavioral flexibility to data-driven models while maintaining interpretability. We assessed the proposed model, the Active Inference Driving Agent (AIDA), through a benchmark analysis against the rule-based Intelligent Driver Model, and two neural network Behavior Cloning models. The models were trained and tested on a real-world driving dataset using a consistent process. The testing results showed that the AIDA predicted driving controls significantly better than the rule-based Intelligent Driver Model and had similar accuracy to the data-driven neural network models in three out of four evaluations. Subsequent interpretability analyses illustrated that the AIDA's learned distributions were consistent with driver behavior theory and that visualizations of the distributions could be used to directly comprehend the model's decision making process and correct model errors attributable to limited training data. The results indicate that the AIDA is a promising alternative to black-box data-driven models and suggest a need for further research focused on modeling driving style and model training with more diverse datasets
    • …
    corecore