166 research outputs found

    A review of recent control techniques of drooped inverter‐based AC microgrids

    Get PDF
    As the penetration of distributed generation (DG) systems in the grid is increasing, the challenge of combining large numbers of DGs in the power systems has to be carefully clarified and managed. The control strategy and management concept of the interconnected systems should be flexible and reliable to handle the various types of DGs. This can be suitably met by microgrids. This paper introduces the microgrid structure and elements and states the main objectives that should be achieved by the microgrid controllers and each DG controller in both operation modes (grid-connected and island mode). It also presents the challenges of having multiple DG units in a microgrid in terms of accurate power control/sharing, voltage and frequency regulation, power management between DGs, different renewable energy sources integration and deployment, seamless mode transfer, and the modeling issues. The centralized and decentralized control techniques as potential solutions have been discussed and compared by highlighting the advantages and disadvantages of each. Furthermore, the recent control techniques for drooped alternating current microgrids and the main proposed solutions and contributions in the literature have been exposed to finally overcome the droop control limitations and obtain a flexible and smart distributed power system

    Nonlinear Modeling of Power Electronics-based Power Systems for Control Design and Harmonic Studies

    Get PDF
    The massive integration of power electronics devices in the modern electric grid marked a turning point in the concept of stability, power quality and control in power systems. The evolution of the grid toward a converter-dominated network motivates a deep renovation of the classical power system theory developed for machine-dominated networks. The high degree of controllability of power electronics converters, furthermore, paves the way to the investigation of advanced control strategies to enhance the grid stability, resiliency and sustainability. This doctoral dissertation explores four cardinal topics in the field of power electronics-based power systems: dynamic modeling, stability analysis, converters control, and power quality with particular focus on harmonic distortion. In all four research areas, a particular attention is given to the implications of the nonlinearity of the converter models on the power system

    Advance control of a synchronous reluctance motor drive

    Get PDF
    This thesis investigates two predictive control algorithms designed to enhance the performance of a synchronous reluctance motor drive. In particular, a finite-control set solution approach has been followed. In particular, this thesis proposes the inclusion of integral terms into the cost function to ensure zero steady-state errors thus compensating for any model inaccuracy. In addition, a control effort term is also considered in the online optimization definition to achieve a quasi-continuous time digital controller given the high achievable ratio between the sampling frequency and the average switching frequency. After a comprehensive simulation study showing the advantages of the proposed approach over the conventional predictive controller solution over a wide range of operating conditions, several experimental test results are reported. The effectiveness of the proposed control approach, including a detailed analysis of the effect of the load and speed variations, is thus fully verified providing useful guidelines for the design of a direct model predictive controller of synchronous reluctance motor drives. In addition, this thesis investigates an innovative duty cycle calculation method for a continuous-control set model predictive control. The formulation of the duty cycles, as well as the introduction of integral terms, enable good reference tracking performance with zero steady-state error at fixed switching frequency over the whole current operating range. Low current ripple with smooth and fast dynamics are achievable, making the proposed control algorithm suitable as a valid alternative in synchronous reluctance motor drives over the established control methods. Simulations and experimental results show the effectiveness and the advantages of the proposed control algorithm over the benchmark

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Planning and Management of a solar power-based distribution system

    Full text link
    This thesis is aimed at the response of the power system network to the integration of solar photovoltaic (PV) generation and battery energy storage systems (BESS). Any solar power–based system integrated into a grid has voltage fluctuations that must be controlled through adaptive and robust control algorithms. The siting of battery in a distribution system affects system performance, including voltage regulation, system losses and cost minimization. In particular, here the aim is to analyse how the present-day schemes and technologies affect voltages, and their control, in the network. Another focus is on the optimal placement of BESS to facilitate system loss minimisation and cost reduction in the system. The battery placement optimisation is achieved through the minimisation of the losses in, and the cost of, the system. The voltage regulation is achieved through two control algorithms: Synchronous Reference Frame theory (SRFT) and adaptive linear neural network (ADALINE), which are subsequently modified by incorporation of fuzzy logic into the control system. Both battery placement optimisation and improvements to voltage regulation are shown to improve performance of the system. A further aim of this work is to improve cooperation between present day grid regulation equipment and schemes and the conventional methods through advancements in the control techniques. The aims of this thesis are as follows: 1. It is essential to place BESSs optimally. The aim of the thesis is to study and enhance the method of the optimal siting of battery energy storage in the presence of renewable energy–based power generating sources (RES)– such as solar PV – in a low-voltage power system network. A model for optimisation is developed to potentially find the battery site that enhances the hosting capability of the RES of the power system network. Among the essential points of this technique are its accuracy and robust nature. The fitness function includes the minimisation of the cost of operation and of system losses. 2. The second research objective is to examine the power control techniques of the inverter that might be leading to the voltage quality issues during unbalanced voltage scenarios, especially with solar PV–based generation in the power system. As such, after the implementation of the suggested coordination of the control mechanism into the grid under study, the variations in the voltage due to the solar PV variability dynamics are regulated more quickly and more precisely compared with the control schemes employed in the past. This substantially minimises the voltage fluctuations in time and amplitude, helps in mitigating hunting phenomena in voltage and provides alternative to the unnecessary control operations existing in the system

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Power Quality in Electrified Transportation Systems

    Get PDF
    "Power Quality in Electrified Transportation Systems" has covered interesting horizontal topics over diversified transportation technologies, ranging from railways to electric vehicles and ships. Although the attention is chiefly focused on typical railway issues such as harmonics, resonances and reactive power flow compensation, the integration of electric vehicles plays a significant role. The book is completed by some additional significant contributions, focusing on the interpretation of Power Quality phenomena propagation in railways using the fundamentals of electromagnetic theory and on electric ships in the light of the latest standardization efforts

    Selected Papers from the ICEUBI2019 - International Congress on Engineering - Engineering for Evolution

    Get PDF
    Energies SI Book "Selected Papers from the ICEUBI2019 – International Congress on Engineering – Engineering for Evolution", groups six papers into fundamental engineering areas: Aeronautics and Astronautics, and Electrotechnical and Mechanical Engineering. ICEUBI—International Congress on Engineering is organized every two years by the Engineering Faculty of Beira Interior University, Portugal, promoting engineering in society through contact among researchers and practitioners from different fields of engineering, and thus encouraging the dissemination of engineering research, innovation, and development. All selected papers are interrelated with energy topics (fundamentals, sources, exploration, conversion, and policies), and provide relevant data for academics, research-focused practitioners, and policy makers

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc
    • 

    corecore