7,130 research outputs found

    Using cascading Bloom filters to improve the memory usage for de Brujin graphs

    Get PDF
    De Brujin graphs are widely used in bioinformatics for processing next-generation sequencing data. Due to a very large size of NGS datasets, it is essential to represent de Bruijn graphs compactly, and several approaches to this problem have been proposed recently. In this work, we show how to reduce the memory required by the algorithm of [3] that represents de Brujin graphs using Bloom filters. Our method requires 30% to 40% less memory with respect to the method of [3], with insignificant impact to construction time. At the same time, our experiments showed a better query time compared to [3]. This is, to our knowledge, the best practical representation for de Bruijn graphs.Comment: 12 pages, submitte

    In-packet Bloom filters: Design and networking applications

    Full text link
    The Bloom filter (BF) is a well-known space-efficient data structure that answers set membership queries with some probability of false positives. In an attempt to solve many of the limitations of current inter-networking architectures, some recent proposals rely on including small BFs in packet headers for routing, security, accountability or other purposes that move application states into the packets themselves. In this paper, we consider the design of such in-packet Bloom filters (iBF). Our main contributions are exploring the design space and the evaluation of a series of extensions (1) to increase the practicality and performance of iBFs, (2) to enable false-negative-free element deletion, and (3) to provide security enhancements. In addition to the theoretical estimates, extensive simulations of the multiple design parameters and implementation alternatives validate the usefulness of the extensions, providing for enhanced and novel iBF networking applications.Comment: 15 pages, 11 figures, preprint submitted to Elsevier COMNET Journa

    Distributed Collaborative Monitoring in Software Defined Networks

    Full text link
    We propose a Distributed and Collaborative Monitoring system, DCM, with the following properties. First, DCM allow switches to collaboratively achieve flow monitoring tasks and balance measurement load. Second, DCM is able to perform per-flow monitoring, by which different groups of flows are monitored using different actions. Third, DCM is a memory-efficient solution for switch data plane and guarantees system scalability. DCM uses a novel two-stage Bloom filters to represent monitoring rules using small memory space. It utilizes the centralized SDN control to install, update, and reconstruct the two-stage Bloom filters in the switch data plane. We study how DCM performs two representative monitoring tasks, namely flow size counting and packet sampling, and evaluate its performance. Experiments using real data center and ISP traffic data on real network topologies show that DCM achieves highest measurement accuracy among existing solutions given the same memory budget of switches
    • …
    corecore