43,462 research outputs found

    The impact of collarette region-based convolutional neural network for iris recognition

    Get PDF
    Iris recognition is a biometric technique that reliably and quickly recognizes a person by their iris based on unique biological characteristics. Iris has an exceptional structure and it provides very rich feature spaces as freckles, stripes, coronas, zigzag collarette area, etc. It has many features where its growing interest in biometric recognition lies. This paper proposes an improved iris recognition method for person identification based on Convolutional Neural Networks (CNN) with an improved recognition rate based on a contribution on zigzag collarette area - the area surrounding the pupil - recognition. Our work is in the field of biometrics especially iris recognition; the iris recognition rate using the full circle of the zigzag collarette was compared with the detection rate using the lower semicircle of the zigzag collarette. The classification of the collarette is based on the Alex-Net model to learn this feature, the use of the couple (collarette/CNN) allows for noiseless and more targeted characterization and also an automatic extraction of the lower semicircle of the collarette region, finally, the SVM training model is used for classification using grayscale eye image data taken from (CASIA-iris-V4) database. The experimental results show that our contribution proves to be the best accurate, because the CNN can effectively extract the image features with higher classification accuracy and because our new method, which uses the lower semicircle of the collarette region, achieved the highest recognition accuracy compared with the old methods that use the full circle of collarette region

    Improving a 3-D Convolutional Neural Network Model Reinvented from VGG16 with Batch Normalization

    Get PDF
    It is challenging to build and train a Convolutional Neural Network model that can achieve a high accuracy rate for the first time. There are many variables to consider such as initial parameters, learning rate, and batch size. Unsuccessfully training a model is one of the most inevitable problems. In some cases, the model struggles to find a lower Loss Function value which results in a poor performance. Batch Normalization is considered as a remedy to overcome this problem. In this paper, two models reinvented from VGG16 are created with and without using Batch Normalization to evaluate their model performance. It is clear that the model using Batch Normalization provides a better result in terms of Loss Function value and model accuracy, which also achieves a very high accuracy rate. It also reaches the saturation point of the highest model accuracy faster than the model without Batch Normalization. This paper also finds that the accuracy of 3D Convolutional Neural Network model reinvented from VGG16 with Batch Normalization is at 91.2% which can beat many benchmarking results on UCF101 such as IDT [5], Two-Stream [10], and Dynamic Image Networks IDT [4]. The technique introduced in this paper shows a fast, reliable and accurate estimation of human activity type and could be used in smart environments

    Multi-Label Image Classification via Knowledge Distillation from Weakly-Supervised Detection

    Full text link
    Multi-label image classification is a fundamental but challenging task towards general visual understanding. Existing methods found the region-level cues (e.g., features from RoIs) can facilitate multi-label classification. Nevertheless, such methods usually require laborious object-level annotations (i.e., object labels and bounding boxes) for effective learning of the object-level visual features. In this paper, we propose a novel and efficient deep framework to boost multi-label classification by distilling knowledge from weakly-supervised detection task without bounding box annotations. Specifically, given the image-level annotations, (1) we first develop a weakly-supervised detection (WSD) model, and then (2) construct an end-to-end multi-label image classification framework augmented by a knowledge distillation module that guides the classification model by the WSD model according to the class-level predictions for the whole image and the object-level visual features for object RoIs. The WSD model is the teacher model and the classification model is the student model. After this cross-task knowledge distillation, the performance of the classification model is significantly improved and the efficiency is maintained since the WSD model can be safely discarded in the test phase. Extensive experiments on two large-scale datasets (MS-COCO and NUS-WIDE) show that our framework achieves superior performances over the state-of-the-art methods on both performance and efficiency.Comment: accepted by ACM Multimedia 2018, 9 pages, 4 figures, 5 table
    corecore