5,579 research outputs found

    Event Extraction: A Survey

    Full text link
    Extracting the reported events from text is one of the key research themes in natural language processing. This process includes several tasks such as event detection, argument extraction, role labeling. As one of the most important topics in natural language processing and natural language understanding, the applications of event extraction spans across a wide range of domains such as newswire, biomedical domain, history and humanity, and cyber security. This report presents a comprehensive survey for event detection from textual documents. In this report, we provide the task definition, the evaluation method, as well as the benchmark datasets and a taxonomy of methodologies for event extraction. We also present our vision of future research direction in event detection.Comment: 20 page

    A history and theory of textual event detection and recognition

    Get PDF

    Enhance Representation Learning of Clinical Narrative with Neural Networks for Clinical Predictive Modeling

    Get PDF
    Medicine is undergoing a technological revolution. Understanding human health from clinical data has major challenges from technical and practical perspectives, thus prompting methods that understand large, complex, and noisy data. These methods are particularly necessary for natural language data from clinical narratives/notes, which contain some of the richest information on a patient. Meanwhile, deep neural networks have achieved superior performance in a wide variety of natural language processing (NLP) tasks because of their capacity to encode meaningful but abstract representations and learn the entire task end-to-end. In this thesis, I investigate representation learning of clinical narratives with deep neural networks through a number of tasks ranging from clinical concept extraction, clinical note modeling, and patient-level language representation. I present methods utilizing representation learning with neural networks to support understanding of clinical text documents. I first introduce the notion of representation learning from natural language processing and patient data modeling. Then, I investigate word-level representation learning to improve clinical concept extraction from clinical notes. I present two works on learning word representations and evaluate them to extract important concepts from clinical notes. The first study focuses on cancer-related information, and the second study evaluates shared-task data. The aims of these two studies are to automatically extract important entities from clinical notes. Next, I present a series of deep neural networks to encode hierarchical, longitudinal, and contextual information for modeling a series of clinical notes. I also evaluate the models by predicting clinical outcomes of interest, including mortality, length of stay, and phenotype predictions. Finally, I propose a novel representation learning architecture to develop a generalized and transferable language representation at the patient level. I also identify pre-training tasks appropriate for constructing a generalizable language representation. The main focus is to improve predictive performance of phenotypes with limited data, a challenging task due to a lack of data. Overall, this dissertation addresses issues in natural language processing for medicine, including clinical text classification and modeling. These studies show major barriers to understanding large-scale clinical notes. It is believed that developing deep representation learning methods for distilling enormous amounts of heterogeneous data into patient-level language representations will improve evidence-based clinical understanding. The approach to solving these issues by learning representations could be used across clinical applications despite noisy data. I conclude that considering different linguistic components in natural language and sequential information between clinical events is important. Such results have implications beyond the immediate context of predictions and further suggest future directions for clinical machine learning research to improve clinical outcomes. This could be a starting point for future phenotyping methods based on natural language processing that construct patient-level language representations to improve clinical predictions. While significant progress has been made, many open questions remain, so I will highlight a few works to demonstrate promising directions

    A study on developing novel methods for relation extraction

    Get PDF
    Relation Extraction (RE) is a task of Natural Language Processing (NLP) to detect and classify the relations between two entities. Relation extraction in the biomedical and scientific literature domain is challenging as text can contain multiple pairs of entities in the same instance. During the course of this research, we developed an RE framework (RelEx), which consists of five main RE paradigms: rule-based, machine learning-based, Convolutional Neural Network (CNN)-based, Bidirectional Encoder Representations from Transformers (BERT)-based, and Graph Convolutional Networks (GCNs)-based approaches. RelEx\u27s rule-based approach uses co-location information of the entities to determine whether a relation exists between a selected entity and the other entities. RelEx\u27s machine learning-based approach consists of traditional feature representations into traditional machine learning algorithms. RelEx\u27s CNN-based approach consists of three CNN architectures: Segment-CNN, single-label Sentence-CNN, and multi-label Sentence-CNN. RelEx\u27s BERT-based approach utilizes BERT\u27s contextualized word embeddings into a feed-forward neural network. Finally, RelEx\u27s GCN-based approach consists of two GCN-based architectures: GCN-Vanilla, GCN-BERT. We evaluated variations of these approaches in two different domains across four distinct relation types. Overall our findings showed that the rule-based approach is applicable for data with fewer instances in the training data. In contrast, the CNN-based, BERT-based, and GCN-based approaches perform better with labeled data with many training instances. These approaches automatically identify patterns in the data efficiently, whereas rule-based approaches require expert knowledge to generate rules. The CNN-based, BERT-based approaches capture the local contextual information within a sentence or document by embedding both semantic and syntactic information in a learned representation. However, their ability to capture the long-range dependency global information in a text is limited. GCN-based approaches capture the global association information by performing convolution operations on neighbor nodes in a graph and incorporating information from neighbors. Combining GCN with BERT integrates the local contextual and global association information of the words and generates better representations for the words

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them
    • …
    corecore