310 research outputs found

    Improved particle swarm optimization algorithm for multi-reservoir system operation

    Get PDF
    AbstractIn this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm

    NONLINEAR SYSTEM IDENTIFICATION USING A NOVEL IMMUNE ARTIFICIAL FISH SWARM ALGORITHM

    Get PDF
    This paper proposes a functional link artificial neural network(FLANN) model trained using a modified fish swarm optimization (FSO) algorithm for nonlinear system identification. The system modelling problem has been reformulated as an optimization problem. The FSO algorithm has been modified by incorporating the immunity features of the artificial immune systems. Simulation study reveals improved performance of the proposed algorithm over the conventional FSO algorithm for nonlinear system identification

    Technological Innovations and Advances in Hydropower Engineering

    Get PDF
    It has been more than 140 years since water was used to generate electricity. Especially since the 1970s, with the advancement of science and technology, new technologies, new processes, and new materials have been widely used in hydropower construction. Engineering equipment and technology, as well as cascade development, have become increasingly mature, making possible the construction of many high dams and large reservoirs in the world. However, with the passage of time, hydropower infrastructure such as reservoirs, dams, and power stations built in large numbers in the past are aging. This, coupled with singular use of hydropower, limits the development of hydropower in the future. This book reports the achievements in hydropower construction and the efforts of sustainable hydropower development made by various countries around the globe. These existing innovative studies and applications stimulate new ideas for the renewal of hydropower infrastructure and the further improvement of hydropower development and utilization efficiency

    Optimal operation of dams/reservoirs emphasizing potential environmental and climate change impacts

    Get PDF
    Mahdi studied the potential ecological and climate change impacts on management of dams. He developed several new optimization frameworks in which benefits of dams are maximized, while above impacts are mitigated. Governments and consulting engineers can use the proposed frameworks for managing dams considering environmental challenges in river basins

    Linking ecohydraulic simulation and optimization system for mitigating economic and environmental losses of reservoirs

    Get PDF
    Balancing the benefits and environmental degradations of the reservoirs is a challenging issue in the reservoir management. The present study proposes and evaluates an integrated framework to optimize reservoir operation in which hydropower loss and economic loss of irrigation supply are minimized while ecological degradations at downstream river are alleviated. The ecohydraulic simulation was utilized in the structure of the reservoir operation optimization. Reservoir operation losses and environmental degradations were minimized in three hydrological conditions including dry years, normal years and wet years. Moreover, the cropping pattern optimization was applied to mitigate the economic loss of irrigation supply as the main responsibility of the reservoir in the study area. Particle swarm optimization was applied in the reservoir operation optimization. Based on the results in the case study, reliability indices of hydropower production and farmers’ revenue are 15–25 and 30–60%, respectively. Moreover, the physical habitat loss is considerably reduced in all hydrologic conditions by proposing optimal environmental flow. The proposed method is able to provide a fair balance between downstream environmental degradations and economic benefits of the reservoir including farmers’ revenue and hydropower production. Low computational complexities are the most important strength point for the developed model

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Enhanced artificial bee colony-least squares support vector machines algorithm for time series prediction

    Get PDF
    Over the past decades, the Least Squares Support Vector Machines (LSSVM) has been widely utilized in prediction task of various application domains. Nevertheless, existing literature showed that the capability of LSSVM is highly dependent on the value of its hyper-parameters, namely regularization parameter and kernel parameter, where this would greatly affect the generalization of LSSVM in prediction task. This study proposed a hybrid algorithm, based on Artificial Bee Colony (ABC) and LSSVM, that consists of three algorithms; ABC-LSSVM, lvABC-LSSVM and cmABC-LSSVM. The lvABC algorithm is introduced to overcome the local optima problem by enriching the searching behaviour using Levy mutation. On the other hand, the cmABC algorithm that incorporates conventional mutation addresses the over- fitting or under-fitting problem. The combination of lvABC and cmABC algorithm, which is later introduced as Enhanced Artificial Bee Colony–Least Squares Support Vector Machine (eABC-LSSVM), is realized in prediction of non renewable natural resources commodity price. Upon the completion of data collection and data pre processing, the eABC-LSSVM algorithm is designed and developed. The predictability of eABC-LSSVM is measured based on five statistical metrics which include Mean Absolute Percentage Error (MAPE), prediction accuracy, symmetric MAPE (sMAPE), Root Mean Square Percentage Error (RMSPE) and Theils’ U. Results showed that the eABC-LSSVM possess lower prediction error rate as compared to eight hybridization models of LSSVM and Evolutionary Computation (EC) algorithms. In addition, the proposed algorithm is compared to single prediction techniques, namely, Support Vector Machines (SVM) and Back Propagation Neural Network (BPNN). In general, the eABC-LSSVM produced more than 90% prediction accuracy. This indicates that the proposed eABC-LSSVM is capable of solving optimization problem, specifically in the prediction task. The eABC-LSSVM is hoped to be useful to investors and commodities traders in planning their investment and projecting their profit

    Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem

    Get PDF
    This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA) for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality  of wolf is  possessing  both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA) algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • …
    corecore