7,221 research outputs found

    Improved Approximation Algorithms for Steiner Connectivity Augmentation Problems

    Full text link
    The Weighted Connectivity Augmentation Problem is the problem of augmenting the edge-connectivity of a given graph by adding links of minimum total cost. This work focuses on connectivity augmentation problems in the Steiner setting, where we are not interested in the connectivity between all nodes of the graph, but only the connectivity between a specified subset of terminals. We consider two related settings. In the Steiner Augmentation of a Graph problem (kk-SAG), we are given a kk-edge-connected subgraph HH of a graph GG. The goal is to augment HH by including links and nodes from GG of minimum cost so that the edge-connectivity between nodes of HH increases by 1. In the Steiner Connectivity Augmentation Problem (kk-SCAP), we are given a Steiner kk-edge-connected graph connecting terminals RR, and we seek to add links of minimum cost to create a Steiner (k+1)(k+1)-edge-connected graph for RR. Note that kk-SAG is a special case of kk-SCAP. All of the above problems can be approximated to within a factor of 2 using e.g. Jain's iterative rounding algorithm for Survivable Network Design. In this work, we leverage the framework of Traub and Zenklusen to give a (1+ln2+ε)(1 + \ln{2} +\varepsilon)-approximation for the Steiner Ring Augmentation Problem (SRAP): given a cycle H=(V(H),E)H = (V(H),E) embedded in a larger graph G=(V,EL)G = (V, E \cup L) and a subset of terminals RV(H)R \subseteq V(H), choose a subset of links SLS \subseteq L of minimum cost so that (V,ES)(V, E \cup S) has 3 pairwise edge-disjoint paths between every pair of terminals. We show this yields a polynomial time algorithm with approximation ratio (1+ln2+ε)(1 + \ln{2} + \varepsilon) for 22-SCAP. We obtain an improved approximation guarantee of (1.5+ε)(1.5+\varepsilon) for SRAP in the case that R=V(H)R = V(H), which yields a (1.5+ε)(1.5+\varepsilon)-approximation for kk-SAG for any kk

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    Approximation Algorithms for Union and Intersection Covering Problems

    Get PDF
    In a classical covering problem, we are given a set of requests that we need to satisfy (fully or partially), by buying a subset of items at minimum cost. For example, in the k-MST problem we want to find the cheapest tree spanning at least k nodes of an edge-weighted graph. Here nodes and edges represent requests and items, respectively. In this paper, we initiate the study of a new family of multi-layer covering problems. Each such problem consists of a collection of h distinct instances of a standard covering problem (layers), with the constraint that all layers share the same set of requests. We identify two main subfamilies of these problems: - in a union multi-layer problem, a request is satisfied if it is satisfied in at least one layer; - in an intersection multi-layer problem, a request is satisfied if it is satisfied in all layers. To see some natural applications, consider both generalizations of k-MST. Union k-MST can model a problem where we are asked to connect a set of users to at least one of two communication networks, e.g., a wireless and a wired network. On the other hand, intersection k-MST can formalize the problem of connecting a subset of users to both electricity and water. We present a number of hardness and approximation results for union and intersection versions of several standard optimization problems: MST, Steiner tree, set cover, facility location, TSP, and their partial covering variants

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TVT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every vTv \in T; TT is kk-connected in JJ if TT is kk-connected to every sTs \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TVT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FEEJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JFJ \cup F. The problem admits trivial ratio O(T2)O(|T|^2). We consider the case T>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3TTk)2H(3TTk)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρO(TTklogk)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min{T,O(k)}\min\{|T|,O(k)\} for edge-costs and min{T,O(klogT)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=T\rho=|T| for both versions. Our results imply that unless k=To(T)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}
    corecore