920 research outputs found

    SaliencyRank: Two-stage manifold ranking for salient object detection

    Get PDF

    Advanced Visual Computing for Image Saliency Detection

    Get PDF
    Saliency detection is a category of computer vision algorithms that aims to filter out the most salient object in a given image. Existing saliency detection methods can generally be categorized as bottom-up methods and top-down methods, and the prevalent deep neural network (DNN) has begun to show its applications in saliency detection in recent years. However, the challenges in existing methods, such as problematic pre-assumption, inefficient feature integration and absence of high-level feature learning, prevent them from superior performances. In this thesis, to address the limitations above, we have proposed multiple novel models with favorable performances. Specifically, we first systematically reviewed the developments of saliency detection and its related works, and then proposed four new methods, with two based on low-level image features, and two based on DNNs. The regularized random walks ranking method (RR) and its reversion-correction-improved version (RCRR) are based on conventional low-level image features, which exhibit higher accuracy and robustness in extracting the image boundary based foreground / background queries; while the background search and foreground estimation (BSFE) and dense and sparse labeling (DSL) methods are based on DNNs, which have shown their dominant advantages in high-level image feature extraction, as well as the combined strength of multi-dimensional features. Each of the proposed methods is evaluated by extensive experiments, and all of them behave favorably against the state-of-the-art, especially the DSL method, which achieves remarkably higher performance against sixteen state-of-the-art methods (including ten conventional methods and six learning based methods) on six well-recognized public datasets. The successes of our proposed methods reveal more potential and meaningful applications of saliency detection in real-life computer vision tasks

    Robust saliency detection via regularized random walks ranking

    Get PDF
    In the field of saliency detection, many graph-based algorithms heavily depend on the accuracy of the pre-processed superpixel segmentation, which leads to significant sacrifice of detail information from the input image. In this paper, we propose a novel bottom-up saliency detection approach that takes advantage of both region-based features and image details. To provide more accurate saliency estimations, we first optimize the image boundary selection by the proposed erroneous boundary removal. By taking the image details and region-based estimations into account, we then propose the regularized random walks ranking to formulate pixel-wised saliency maps from the superpixel-based background and foreground saliency estimations. Experiment results on two public datasets indicate the significantly improved accuracy and robustness of the proposed algorithm in comparison with 12 state-of-the-art saliency detection approaches
    • …
    corecore