5,132 research outputs found

    Computational linear algebra over finite fields

    Get PDF
    We present here algorithms for efficient computation of linear algebra problems over finite fields

    Low-complexity RLS algorithms using dichotomous coordinate descent iterations

    Get PDF
    In this paper, we derive low-complexity recursive least squares (RLS) adaptive filtering algorithms. We express the RLS problem in terms of auxiliary normal equations with respect to increments of the filter weights and apply this approach to the exponentially weighted and sliding window cases to derive new RLS techniques. For solving the auxiliary equations, line search methods are used. We first consider conjugate gradient iterations with a complexity of O(N-2) operations per sample; N being the number of the filter weights. To reduce the complexity and make the algorithms more suitable for finite precision implementation, we propose a new dichotomous coordinate descent (DCD) algorithm and apply it to the auxiliary equations. This results in a transversal RLS adaptive filter with complexity as low as 3N multiplications per sample, which is only slightly higher than the complexity of the least mean squares (LMS) algorithm (2N multiplications). Simulations are used to compare the performance of the proposed algorithms against the classical RLS and known advanced adaptive algorithms. Fixed-point FPGA implementation of the proposed DCD-based RLS algorithm is also discussed and results of such implementation are presented

    Decoding Generalized Reed-Solomon Codes and Its Application to RLCE Encryption Schemes

    Get PDF
    This paper compares the efficiency of various algorithms for implementing quantum resistant public key encryption scheme RLCE on 64-bit CPUs. By optimizing various algorithms for polynomial and matrix operations over finite fields, we obtained several interesting (or even surprising) results. For example, it is well known (e.g., Moenck 1976 \cite{moenck1976practical}) that Karatsuba's algorithm outperforms classical polynomial multiplication algorithm from the degree 15 and above (practically, Karatsuba's algorithm only outperforms classical polynomial multiplication algorithm from the degree 35 and above ). Our experiments show that 64-bit optimized Karatsuba's algorithm will only outperform 64-bit optimized classical polynomial multiplication algorithm for polynomials of degree 115 and above over finite field GF(210)GF(2^{10}). The second interesting (surprising) result shows that 64-bit optimized Chien's search algorithm ourperforms all other 64-bit optimized polynomial root finding algorithms such as BTA and FFT for polynomials of all degrees over finite field GF(210)GF(2^{10}). The third interesting (surprising) result shows that 64-bit optimized Strassen matrix multiplication algorithm only outperforms 64-bit optimized classical matrix multiplication algorithm for matrices of dimension 750 and above over finite field GF(210)GF(2^{10}). It should be noted that existing literatures and practices recommend Strassen matrix multiplication algorithm for matrices of dimension 40 and above. All our experiments are done on a 64-bit MacBook Pro with i7 CPU and single thread C codes. It should be noted that the reported results should be appliable to 64 or larger bits CPU architectures. For 32 or smaller bits CPUs, these results may not be applicable. The source code and library for the algorithms covered in this paper are available at http://quantumca.org/
    • …
    corecore