36 research outputs found

    Multistatic radar optimization for radar sensor network applications

    Get PDF
    The design of radar sensor networks (RSN) has undergone great advancements in recent years. In fact, this kind of system is characterized by a high degree of design flexibility due to the multiplicity of radar nodes and data fusion approaches. This thesis focuses on the development and analysis of RSN architectures to optimize target detection and positioning performances. A special focus is placed upon distributed (statistical) multiple-input multipleoutput (MIMO) RSN systems, where spatial diversity could be leveraged to enhance radar target detection capabilities. In the first part of this thesis, the spatial diversity is leveraged in conjunction with cognitive waveform selection and design techniques to quickly adapt to target scene variations in real time. In the second part, we investigate the impact of RSN geometry, particularly the placement of multistatic radar receivers, on target positioning accuracy. We develop a framework based on cognitive waveform selection in conjunction with adaptive receiver placement strategy to cope with time-varying target scattering characteristics and clutter distribution parameters in the dynamic radar scene. The proposed approach yields better target detection performance and positioning accuracy as compared with conventional methods based on static transmission or stationary multistatic radar topology. The third part of this thesis examines joint radar and communication systems coexistence and operation via two possible architectures. In the first one, several communication nodes in a network operate separately in frequency. Each node leverages the multi-look diversity of the distributed system by activating radar processing on multiple received bistatic streams at each node level in addition to the pre-existing monostatic processing. This architecture is based on the fact that the communication signal, such as the Orthogonal Frequency Division Multiplexing (OFDM) waveform, could be well-suited for radar tasks if the proper waveform parameters are chosen so as to simultaneously perform communication and radar tasks. The advantage of using a joint waveform for both applications is a permanent availability of radar and communication functions via a better use of the occupied spectrum inside the same joint hardware platform. We then examine the second main architecture, which is more complex and deals with separate radar and communication entities with a partial or total spectrum sharing constraint. We investigate the optimum placement of radar receivers for better target positioning accuracy while reducing the radar measurement errors by minimizing the interference caused by simultaneous operation of the communication system. Better performance in terms of communication interference handling and suppression at the radar level, were obtained with the proposed placement approach of radar receivers compared to the geometric dilution of precision (GDOP)-only minimization metric

    Optimization methods for active and passive localization

    Get PDF
    Active and passive localization employing widely distributed sensors is a problem of interest in various fields. In active localization, such as in MIMO radar, transmitters emit signals that are reflected by the targets and collected by the receive sensors, whereas, in passive localization the sensors collect the signals emitted by the sources themselves. This dissertation studies optimization methods for high precision active and passive localization. In the case of active localization, multiple transmit elements illuminate the targets from different directions. The signals emitted by the transmitters may differ in power and bandwidth. Such resources are often limited and distributed uniformly among the transmitters. However, previous studies based on the well known Cramer-Rao lower bound have shown that the localization accuracy depends on the locations of the transmitters as well as the individual channel gains between different transmitters, targets and receivers. Thus, it is natural to ask whether localization accuracy may be improved by judiciously allocating such limited resources among the transmitters. Using the Cr´amer-Rao lower bound for target localization of multiple targets as a figure of merit, approximate solutions are proposed to the problems of optimal power, optimal bandwidth and optimal joint power and bandwidth allocation. These solutions are computed by minimizing a sequence of convex problems. The quality of these solutions is assessed through extensive numerical simulations and with the help of a lower-bound that certifies their optimality. Simulation results reveal that bandwidth allocation policies have a stronger impact on performance than power. Passive localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor geolocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, are unsatisfactory. This dissertation models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources’ locations by atomic norm minimization. A second-order-cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS

    Efficient closed-form estimators in multistatic target localization and motion analysis

    Get PDF
    Object localization is fast becoming an important research topic because of its wide applications. Often of the time, object localization is accomplished in two steps. The first step exploits the characteristics of the received signals and extracts certain localization information i.e. measurements. Some typical measurements include timeof-arrival (TOA), time-difference-of-arrival (TDOA), received signal strength (RSS) and angle-of-arrival (AOA). Together with the known receiver position information, the object location is then estimated in the second step from the obtained measurements. The localization of an object using a number of sensors is often challenged due to the highly nonlinear relationship between the measurements and the object location. This thesis focuses on the second step and considers designing novel and efficient localization algorithms to solve such a problem. This thesis first derives a new algebraic positioning solution using a minimum number of measurements, and from which to develop an object location estimator. Two measurements are sufficient in 2-D and three in 3-D to yield a solution if they are consistent. The derived minimum measurement solution is exact and reduces the computation to the roots of a quadratic equation. The solution derivation also leads to simple criteria to ascertain if the line of positions from two measurements intersects. By partitioning the overdetermined set of measurements first to obtain the individual minimum measurement solutions, we propose a best linear unbiased estimator to form the final location estimate. The analysis supports the proposed estimator in reaching the Cramer-Rao Lower Bound (CRLB) accuracy under Gaussian noise. A measurement partitioning scheme is developed to improve performance when the noise level becomes large. We mainly use elliptic time delay measurements for presentation, and the derived results apply to the hyperbolic time difference measurements as well. Both the 2-D and 3-D scenarios are considered. A multistatic system uses a transmitter to illuminate the object of interest and collects the reflected signal by several receivers to determine its location. In some scenarios such as passive coherent localization or for gaining flexibility, the position of the transmitter is not known. In this thesis, we investigate the use of the indirect path measurements reflected off the object alone, or together with the direct path measurements from the transmitter to receiver for locating the object in the absence of the transmitter position. We show that joint estimation of the object and transmitter positions from both the indirect and direct measurements can yield better object location estimate than using the indirect measurements only by eliminating the dependency of the transmitter position. An algebraic closed-form solution is developed for the nonlinear problem of joint estimation and is shown analytically to achieve the CRLB performance under Gaussian noise over the small error region. To complete the study and gain insight, the optimum receiver placement in the absence of transmitter position is derived, by minimizing the estimation confidence region or the estimation variance for the object location. The performance lost due to unknown transmitter position under the optimum geometries is quantified. Simulations confirm well with the theoretical developments. In practice, a more realistic localization scenario with the unknown transmitter is that the transmitter works non-cooperatively. In this situation, no timestamp is available in the transmitted signal so that the signal sent time is often not known. This thesis next considers the extension of the localization scenario to such a case. More generally, the motion potential of the unknown object and transmitter is considered in the analysis. When the transmitted signal has a well-defined pattern such as some standard synchronization or pilot sequence, it would still be able to estimate the indirect and direct time delays and Doppler frequency shifts but with unknown constant time delay and frequency offset added. In this thesis, we would like to estimate the object and transmitter positions and velocities, and the time and frequency offsets jointly. Both dynamic and partial dynamic localization scenarios based on the motion status of the object and the transmitter are considered in this thesis. By investigating the CRLB of the object location estimate, the improvement in position and velocity estimate accuracy through joint estimation comparing with the differencing approach using TDOA/FDOA measurements is evaluated. The degradation due to time and frequency offsets is also analyzed. Algebraic closed-form solutions to solve the highly nonlinear joint estimation problems are then proposed in this thesis, followed by the analysis showing that the CRLB performance can be achieved under Gaussian noise over the small error region. When the transmitted signal is not time-stamped and does not have a well-defined pattern such as some standard synchronization or pilot sequence, it is often impossible to obtain the indirect and direct measurements separately. Instead, a self-calculated TDOA between the indirect- and direct-path TOAs shall be considered which does not require any synchronization between the transmitter and a receiver, or among the receivers. A refinement method is developed to locate the object in the presence of the unknown transmitter position, where a hypothesized solution is needed for initialization. Analysis shows that the refinement method is able to achieve the CRLB performance under Gaussian noise. Three realizations of the hypothesized solution applying multistage processing to simplify the nonlinear estimation problem are derived. Simulations validate the effectiveness in initializing the refinement estimator

    Target kinematic state estimation with passive multistatic radar

    Get PDF

    Moving object localization using frequency measurements

    Get PDF
    This research investigates the ability of locating a moving object using the Doppler shifts of a carrier frequency signal sent or re ected by the object and observed by several fixed or moving sensors spatially distributed in the 2-D or 3-D space. The idea was previously studied and several solutions are proposed based on exhaustive grid search or numerical polynomial optimization. We shall formulate the problem as a constrained optimization and propose two efficient solutions. The first is by using linear optimization method to reach a closed-form solution and the second is through semi-definite relaxation technique to achieve a noise resilient estimate. The solutions are derived first for the single-time measurement and then developed to multipletime observations collected during a short time interval in which the object motion is linear. Several scenarios are considered including 2-D and 3-D localization geometry, the sensors are fixed or moving along nonlinear trajectory with random speed, the presence of errors in the carrier frequency and the sensor positions, and the noncooperative object scenario where the frequency of the carrier signal is completely not known. Analysis validates the algebraic closed-form solution in reaching the Cramer- Rao Lower Bound accuracy under Gaussian noise within the small error region. The simulations show good performance for the proposed algorithms and support the theoretical analysis.Includes bibliographical references

    MĂ©thodes d'Optimisation pour la Localisation Active et Passive

    Get PDF
    La localisation active et passive par un réseau de capteurs distribués est un problème rencontré dans différents domaines d’application. En localisation active, telle que la localisation par radar MIMO (Multiple Input Multiple Output), les émetteurs transmettent des signaux qui sont réfléchis par les cibles visées, puis captés par les antennes réceptrices, alors qu’en localisation passive, les capteurs reçoivent des signaux transmis par les cibles elles-mêmes. L’objectif de cette thèse est d’étudier différentes techniques d’optimisation pour la localisation active et passive de haute précision. Dans la première partie de la thèse, on s’intéresse à la localisation active, où de multiples émetteurs illuminent les cibles depuis différentes directions. Les signaux peuvent être émis avec des puissances ou des largeurs de bande différentes. Ces différentes ressources, par nature en général fortement limitées, sont souvent, par défaut, réparties de façon uniforme entre les différents émetteurs. Or, la précision de la localisation dépend de la position des émetteurs, ainsi que des paramètres (les gains notamment) des différents canaux existant entre émetteurs, cibles, et capteurs. En utilisant comme critère d’optimisation la borne de Cramér-Rao sur la précision de la localisation de cibles multiples, nous proposons une méthode fournissant des solutions approchées aux problèmes d’allocation optimale de puissances seules, de largeurs de bande seules, ou au problème d’allocation conjointe de puissances et de largeurs de bande. Ces solutions sont obtenues en minimisant une suite de problèmes convexes. La qualité de ces solutions approchées est évaluée au travers de nombreuses simulations numériques, mais également par la comparaison avec une borne inférieure définie comme la solution d’un problème d’optimisation avec contraintes relaxées, cette borne pouvant être calculée de façon exacte (numériquement). Cette comparaison permet de constater la proximité de la solution approchée fournie par l’algorithme proposé par rapport à la solution théorique. D’autre part, les simulations ont montré que l’allocation de bande joue un rôle plus important dans les performances de localisation que l’allocation de puissance. Dans la seconde partie de la thèse, on considère le cas de la localisation passive de sources multiples dans un environnement multi-trajet. Ce problème se rencontre notamment dans le cadre de la géolocalisation indoor ou outdoor. Dans ce cas de figure, les approches généralement proposées dans la littérature sont basées sur une méthode ad-hoc de réduction d’interférence couplée à une localisation indirecte obtenue par une estimation de paramètres comme les temps d’arrivée des signaux ou les différences de temps d’arrivée, ou la puissance des signaux reçus. Cependant, les performances de ces approches sont limitées, notamment par le fait que la localisation indirecte d’une cible donnée ne prend pas en compte le fait que les signaux reçus par les différents capteurs émanent d’une seule et même source. Dans cette thèse, nous proposons une modélisation parcimonieuse des signaux reçus. Cette modélisation nous permet, en supposant les formes d’onde connues mais les canaux multi-trajets totalement inconnus, de développer une méthode de localisation directe de l’ensemble des cibles. Cette approche exploite certaines propriétés des canaux, qui permettent de séparer les trajets directs des trajets indirects. Un algorithme d’optimisation conique de second ordre est développé afin d’obtenir une décomposition dite atomique optimale, qui permet d’obtenir une localisation de très bonne précision dans des conditions de propagation difficiles, présentant un phénomène de multi-trajet important et/ou une absence de trajets directs. Nous montrons alors que la technique de localisation directe ainsi proposée présente de meilleures performances de localisation que les méthodes indirectes développées pour un environnement multi-trajet, mais aussi que la méthode de localisation directe la plus efficace proposée dans la littérature, qui n’est adaptée qu’au cas d’une transmission sans multi-trajet. ABSTRACT : Active and passive localization employing widely distributed sensors is a problem of interest in various fields. In active localization, such as in MIMO radar, transmitters emit signals that are reflected by the targets and collected by the receive sensors, whereas, in passive localization the sensors collect the signals emitted by the sources themselves. This dissertation studies optimization methods for high precision active and passive localization. In the case of active localization, multiple transmit elements illuminate the targets from different directions. The signals emitted by the transmitters may differ in power and bandwidth. Such resources are often limited and distributed uniformly among the transmitters. However, previous studies based on the well known Crámer-Rao lower bound have shown that the localization accuracy depends on the locations of the transmitters as well as the individual channel gains between different transmitters, targets and receivers. Thus, it is natural to ask whether localization accuracy may be improved by judiciously allocating such limited resources among the transmitters. Using the Crámer-Rao lower bound for target localization of multiple targets as a figure of merit, approximate solutions are proposed to the problems of optimal power, optimal bandwidth and optimal joint power and bandwidth allocation. These solutions are computed by minimizing a sequence of convex problems. The quality of these solutions is assessed through extensive numerical simulations and with the help of a lower-bound that certifies their optimality. Simulation results reveal that bandwidth allocation policies have a stronger impact on performance than power. Passive localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor geolocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, are unsatisfactory. This dissertation models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources’ locations by atomic norm minimization. A second-order-cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS
    corecore