461 research outputs found

    Remote Sensing for Land Administration 2.0

    Get PDF
    The reprint “Land Administration 2.0” is an extension of the previous reprint “Remote Sensing for Land Administration”, another Special Issue in Remote Sensing. This reprint unpacks the responsible use and integration of emerging remote sensing techniques into the domain of land administration, including land registration, cadastre, land use planning, land valuation, land taxation, and land development. The title was chosen as “Land Administration 2.0” in reference to both this Special Issue being the second volume on the topic “Land Administration” and the next-generation requirements of land administration including demands for 3D, indoor, underground, real-time, high-accuracy, lower-cost, and interoperable land data and information

    Sensors Application in Agriculture

    Get PDF
    Novel technologies are playing an important role in the development of crop and livestock farming and have the potential to be the key drivers of sustainable intensification of agricultural systems. In particular, new sensors are now available with reduced dimensions, reduced costs, and increased performances, which can be implemented and integrated in production systems, providing more data and eventually an increase in information. It is of great importance to support the digital transformation, precision agriculture, and smart farming, and to eventually allow a revolution in the way food is produced. In order to exploit these results, authoritative studies from the research world are still needed to support the development and implementation of new solutions and best practices. This Special Issue is aimed at bringing together recent developments related to novel sensors and their proved or potential applications in agriculture

    Deep Learning of Unified Region, Edge, and Contour Models for Automated Image Segmentation

    Full text link
    Image segmentation is a fundamental and challenging problem in computer vision with applications spanning multiple areas, such as medical imaging, remote sensing, and autonomous vehicles. Recently, convolutional neural networks (CNNs) have gained traction in the design of automated segmentation pipelines. Although CNN-based models are adept at learning abstract features from raw image data, their performance is dependent on the availability and size of suitable training datasets. Additionally, these models are often unable to capture the details of object boundaries and generalize poorly to unseen classes. In this thesis, we devise novel methodologies that address these issues and establish robust representation learning frameworks for fully-automatic semantic segmentation in medical imaging and mainstream computer vision. In particular, our contributions include (1) state-of-the-art 2D and 3D image segmentation networks for computer vision and medical image analysis, (2) an end-to-end trainable image segmentation framework that unifies CNNs and active contour models with learnable parameters for fast and robust object delineation, (3) a novel approach for disentangling edge and texture processing in segmentation networks, and (4) a novel few-shot learning model in both supervised settings and semi-supervised settings where synergies between latent and image spaces are leveraged to learn to segment images given limited training data.Comment: PhD dissertation, UCLA, 202

    A Critical Evaluation of Remote Sensing Based Land Cover Mapping Methodologies

    Get PDF
    A novel, disaggregated approach to land cover survey is developed on the basis of land cover attributes; the parameters typically used to delineate land cover classes. The recording of land cover attributes, via objective measurement techniques, is advocated as it eliminates the requirement for surveyors to delineate and classify land cover; a process proven to be subjective and error prone. Within the North York Moors National Park, a field methodology is developed to characterise five attributes: species composition, cover, height, structure and density. The utility of land cover attributes to act as land cover ‘building blocks’ is demonstrated via classification of the field data to the Monitoring Landscape Change in the National Parks (MLCNP), National Land Use Database (NLUD) and Phase 1 Habitat Mapping (P1) schemes. Integration of the classified field data and a SPOT5 satellite image is demonstrated within per-pixel and object-orientated classification environments. Per-pixel classification produced overall accuracies of 81%, 80% and 76% at the field samples for the MLCNP, NLUD and P1 schemes, respectively. However, independent validation produced significantly lower accuracies. These decreases are demonstrated to be a function of sample fraction. Object-orientated classification, exemplified for the MLCNP schema at 3 segmentation scales, achieved accuracies approaching 75%. The aggregation of attributes to classes underutilises the potential of the remotely sensed data to describe landscape variability. Consequently, classification and geostatistical techniques capable of land cover attribute parameterisation, across the study area, are reviewed and exemplified for a sub-pixel classification. Land cover attributes provide a flexible source of field data which has been proven to support multiple land cover classification schemes and classification scales (sub-pixel, pixel and object). This multi-scaled/schemed approach enables the differential treatment of regions, within the remote sensing image, as a function of landscape characteristics and the users’ requirements providing a flexible mapping solution

    Earth resources: A continuing bibliography with indexes (issue 47)

    Get PDF
    This bibliography lists 524 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Spatial representation for planning and executing robot behaviors in complex environments

    Get PDF
    Robots are already improving our well-being and productivity in different applications such as industry, health-care and indoor service applications. However, we are still far from developing (and releasing) a fully functional robotic agent that can autonomously survive in tasks that require human-level cognitive capabilities. Robotic systems on the market, in fact, are designed to address specific applications, and can only run pre-defined behaviors to robustly repeat few tasks (e.g., assembling objects parts, vacuum cleaning). They internal representation of the world is usually constrained to the task they are performing, and does not allows for generalization to other scenarios. Unfortunately, such a paradigm only apply to a very limited set of domains, where the environment can be assumed to be static, and its dynamics can be handled before deployment. Additionally, robots configured in this way will eventually fail if their "handcrafted'' representation of the environment does not match the external world. Hence, to enable more sophisticated cognitive skills, we investigate how to design robots to properly represent the environment and behave accordingly. To this end, we formalize a representation of the environment that enhances the robot spatial knowledge to explicitly include a representation of its own actions. Spatial knowledge constitutes the core of the robot understanding of the environment, however it is not sufficient to represent what the robot is capable to do in it. To overcome such a limitation, we formalize SK4R, a spatial knowledge representation for robots which enhances spatial knowledge with a novel and "functional" point of view that explicitly models robot actions. To this end, we exploit the concept of affordances, introduced to express opportunities (actions) that objects offer to an agent. To encode affordances within SK4R, we define the "affordance semantics" of actions that is used to annotate an environment, and to represent to which extent robot actions support goal-oriented behaviors. We demonstrate the benefits of a functional representation of the environment in multiple robotic scenarios that traverse and contribute different research topics relating to: robot knowledge representations, social robotics, multi-robot systems and robot learning and planning. We show how a domain-specific representation, that explicitly encodes affordance semantics, provides the robot with a more concrete understanding of the environment and of the effects that its actions have on it. The goal of our work is to design an agent that will no longer execute an action, because of mere pre-defined routine, rather, it will execute an actions because it "knows'' that the resulting state leads one step closer to success in its task

    Advances in Computer Recognition, Image Processing and Communications, Selected Papers from CORES 2021 and IP&C 2021

    Get PDF
    As almost all human activities have been moved online due to the pandemic, novel robust and efficient approaches and further research have been in higher demand in the field of computer science and telecommunication. Therefore, this (reprint) book contains 13 high-quality papers presenting advancements in theoretical and practical aspects of computer recognition, pattern recognition, image processing and machine learning (shallow and deep), including, in particular, novel implementations of these techniques in the areas of modern telecommunications and cybersecurity

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2011

    Get PDF
    PROGRAM FRIDAY, APRIL 15, 2011 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Chemistry and Physics, Section A, Chemistry, Olin A Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center Chemistry and Physics, Section B, Physics, Planetarium Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Junior Academy, Senior High Competition, Olin 124, Olin 131 Teaching of Science and Math, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 Applied Science and Technology, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 MAIBEN MEMORIAL LECTURE, OLIN B Dr. Erin Flynn, Nocturnal Manager, Omaha\u27s Henry Doorly Zoo LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Conestoga Room Anthropology, Olin 111 Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session B, Olin 324 Collegiate Academy, Chemistry and Physics, Session C, Olin 325 Earth Science, Olin 224 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 BUSINESS MEETING, OLIN B AWARDS RECEPTION for NJAS, Scholarships, Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, N

    Derivation of forest inventory parameters from high-resolution satellite imagery for the Thunkel area, Northern Mongolia. A comparative study on various satellite sensors and data analysis techniques.

    Get PDF
    With the demise of the Soviet Union and the transition to a market economy starting in the 1990s, Mongolia has been experiencing dramatic changes resulting in social and economic disparities and an increasing strain on its natural resources. The situation is exacerbated by a changing climate, the erosion of forestry related administrative structures, and a lack of law enforcement activities. Mongolia’s forests have been afflicted with a dramatic increase in degradation due to human and natural impacts such as overexploitation and wildfire occurrences. In addition, forest management practices are far from being sustainable. In order to provide useful information on how to viably and effectively utilise the forest resources in the future, the gathering and analysis of forest related data is pivotal. Although a National Forest Inventory was conducted in 2016, very little reliable and scientifically substantiated information exists related to a regional or even local level. This lack of detailed information warranted a study performed in the Thunkel taiga area in 2017 in cooperation with the GIZ. In this context, we hypothesise that (i) tree species and composition can be identified utilising the aerial imagery, (ii) tree height can be extracted from the resulting canopy height model with accuracies commensurate with field survey measurements, and (iii) high-resolution satellite imagery is suitable for the extraction of tree species, the number of trees, and the upscaling of timber volume and basal area based on the spectral properties. The outcomes of this study illustrate quite clearly the potential of employing UAV imagery for tree height extraction (R2 of 0.9) as well as for species and crown diameter determination. However, in a few instances, the visual interpretation of the aerial photographs were determined to be superior to the computer-aided automatic extraction of forest attributes. In addition, imagery from various satellite sensors (e.g. Sentinel-2, RapidEye, WorldView-2) proved to be excellently suited for the delineation of burned areas and the assessment of tree vigour. Furthermore, recently developed sophisticated classifying approaches such as Support Vector Machines and Random Forest appear to be tailored for tree species discrimination (Overall Accuracy of 89%). Object-based classification approaches convey the impression to be highly suitable for very high-resolution imagery, however, at medium scale, pixel-based classifiers outperformed the former. It is also suggested that high radiometric resolution bears the potential to easily compensate for the lack of spatial detectability in the imagery. Quite surprising was the occurrence of dark taiga species in the riparian areas being beyond their natural habitat range. The presented results matrix and the interpretation key have been devised as a decision tool and/or a vademecum for practitioners. In consideration of future projects and to facilitate the improvement of the forest inventory database, the establishment of permanent sampling plots in the Mongolian taigas is strongly advised.2021-06-0

    Crack Analyser: a novel image-based NDT approach for measuring crack severity ​

    Get PDF
    openIn Europa, le infrastrutture civili e di trasporto necessitano di una manutenzione efficace e proattiva per garantire il continuo funzionamento in sicurezza durante l'intero loro ciclo di vita. I paesi europei devono ogni anno stanziare enormi risorse per mantenere il loro livello di funzionalità. Ciò fa sorgere la necessità urgente di adottare approcci di ispezione di monitoraggio più rapidi e affidabili per aiutare ad affrontare questi problemi. Il deterioramento delle strutture è più spesso anticipato dalla formazione di fessure sulla superficie del calcestruzzo. La presenza di fessurazioni può essere sintomo di diverse problematiche quali dilatazioni e ritiri dovuti a sbalzi di temperatura, assestamenti della struttura, copertura impropria fornita in fase di getto, corrosione delle armature in acciaio, carichi pesanti applicati, vibrazioni insufficienti al momento della posa del calcestruzzo o perdite d'acqua per ritiro superficiale del calcestruzzo. Diventa quindi di primaria importanza l'identificazione, la misurazione e il monitoraggio delle fessurazioni sulla superficie del calcestruzzo. I principali metodi di ispezione attualmente adottati si basano su strumenti manuali e righelli: un’attività lunga e ingombrante, soggetta a errori e scarsamente oggettiva sull'analisi quantitativa perché fortemente dipendente dall'esperienza dell'operatore. Secondo la norma UNI EN 1992-1-1:2005, la larghezza massima delle fessure del calcestruzzo ammessa per una generica classe di rischio è di 0,3 mm. Per questo motivo, per misurare in modo accurato e affidabile la dimensione della fessura, è necessario l’impiego di strumenti di misura con caratteristiche metrologiche adeguate (es. precisione e accuratezza almeno un ordine inferiore al valore da misurare). In caso contrario, la severità della fessura potrebbe essere classificata erroneamente. Questo lavoro di tesi propone un nuovo approccio automatico, basato su immagini, in grado di localizzare e misurare fessure su superfici in calcestruzzo rispettando il vincolo metrologico imposto dalla norma UNI EN 1992-1-1:2005. Utilizzando una sola immagine, il metodo sviluppato è in grado di localizzare e misurare automaticamente e rapidamente la larghezza e la lunghezza di una fessura su una superficie. Il sistema di misura sviluppato sfrutta una singola telecamera operante nel campo del visibile per acquisire un'immagine digitalizzata della superficie da ispezionare. Il componente software del sistema riceve in input la singola immagine che inquadra la crepa e fornisce in output un'immagine aumentata dove viene evidenziata la crepa e la sua larghezza e lunghezza media/max. La misura della larghezza della fessura viene eseguita perpendicolarmente alla linea centrale della fessura con una precisione sub-pixel. Il sistema di misurazione è stato implementato su uno smartphone per eseguire ispezioni manuali da parte dell'operatore e su sistemi integrati per l'ispezione remota con robot o velivoli senza pilota (UAV)). Le strategie sviluppate possono essere facilmente estese a qualsiasi altro contesto in cui sia richiesto un controllo di qualità superficiale mirato all'identificazione e misura di eventuali danni o difettosità. ​Europe’s ageing transport infrastructure needs effective and proactive maintenance in order to continue its safe operation during the entire life cycle; European countries have to allocate huge resources for maintaining their service-ability level. This give rise to the necessity of an urgent need to adopt faster and more reliable monitoring inspection approaches to help tackling these issues. The deterioration of structures is most often foreseen by the formation of cracks on concrete surface. The presence of cracks can be a symptom of various problems like expansion and shrinks due to temperature differences, settlement of the structure, improper cover provided during concreting, corrosion of reinforcement steel, heavy load applied, insufficient vibration at the time of laying the concrete or loss of water from concrete surface shrinkage, therefore the identification, measurement and monitoring of cracks on the concrete surface becomes of primary importance. The main currently adopted inspection methods rely on visual marking and rulers, long and cumbersome activity, prone to errors and poorly objective on quantitative analysis because it strongly depends on operator experience. According to UNI EN 1992-1-1:2005 standard , the maximum admitted concrete crack width is 0.3 mm. For this reason, to accurately and reliably measure the target dimension, it is necessary to employ measurement instruments with suitable metrological characteristics (e.g. precision and accuracy at least one order lower than the value to be measured). Otherwise, the crack severity could be misclassified. This thesis work proposes a novel automatic image-based approach able to locate and measure cracks on concrete surfaces respecting the metrological constraint imposed by UNI EN 1992-1-1:2005 standard. Using only one image, the developed method is able to automatically and rapidly locate and measure the average width and length of a crack in an existing concrete structure. The measurement system developed exploits a single camera working in the visible range to acquire a digitized image of the structure being inspected. The software component of the system receives as input the single image framing the crack and gives as output an augmented image where the crack is highlighted as well as its average/max width and length. The measure of the crack width is performed perpendicularly to the crack central line with sub-pixel accuracy. The measurement system has been deployed on a smartphone for operator-based manual inspections as well on embedded systems for remote inspection with robots or Unmanned Aerial Vehicles (UAVs). The strategies developed can be easily extended from concrete inspection applications to any other context where a surface quality control targeted to the identification of eventual damages/defects is required. The activity was triggered by an explicit need within the EnDurCrete project. ​INGEGNERIA INDUSTRIALEembargoed_20220321Giulietti, Nicol
    corecore