477 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Self-organizing maps in computer security

    Get PDF

    Improving spam email classification accuracy using ensemble techniques: a stacking approach

    Get PDF
    Spam emails pose a substantial cybersecurity danger, necessitating accurate classification to reduce unwanted messages and mitigate risks. This study focuses on enhancing spam email classification accuracy using stacking ensemble machine learning techniques.We trained and tested five classifiers: logistic regression, decision tree, K-nearest neighbors (KNN), Gaussian naive Bayes and AdaBoost. To address overfitting, two distinct datasets of spam emails were aggregated and balanced. Evaluating individual classifiers based on recall, precision and F1 score metrics revealed AdaBoost as the top performer. Considering evolving spam technology and new message types challenging traditional approaches, we propose a stacking method. By combining predictions from multiple base models, the stacking method aims to improve classification accuracy. The results demonstrate superior performance of the stacking method with the highest accuracy (98.8%), recall (98.8%) and F1 score (98.9%) among tested methods. Additional experiments validated our approach by varying dataset sizes and testing different classifier combinations. Our study presents an innovative combination of classifiers that significantly improves accuracy, contributing to the growing body of research on stacking techniques. Moreover, we compare classifier performances using a unique combination of two datasets, highlighting the potential of ensemble techniques, specifically stacking, in enhancing spam email classification accuracy. The implications extend beyond spam classification systems, offering insights applicable to other classification tasks. Continued research on emerging spam techniques is vital to ensure long-term effectiveness

    Self-organizing maps in computer security

    Get PDF

    Intelligent instance selection techniques for support vector machine speed optimization with application to e-fraud detection.

    Get PDF
    Doctor of Philosophy in Computer Science. University of KwaZulu-Natal, Durban 2017.Decision-making is a very important aspect of many businesses. There are grievous penalties involved in wrong decisions, including financial loss, damage of company reputation and reduction in company productivity. Hence, it is of dire importance that managers make the right decisions. Machine Learning (ML) simplifies the process of decision making: it helps to discover useful patterns from historical data, which can be used for meaningful decision-making. The ability to make strategic and meaningful decisions is dependent on the reliability of data. Currently, many organizations are overwhelmed with vast amounts of data, and unfortunately, ML algorithms cannot effectively handle large datasets. This thesis therefore proposes seven filter-based and five wrapper-based intelligent instance selection techniques for optimizing the speed and predictive accuracy of ML algorithms, with a particular focus on Support Vector Machine (SVM). Also, this thesis proposes a novel fitness function for instance selection. The primary difference between the filter-based and wrapper-based technique is in their method of selection. The filter-based techniques utilizes the proposed fitness function for selection, while the wrapper-based technique utilizes SVM algorithm for selection. The proposed techniques are obtained by fusing SVM algorithm with the following Nature Inspired algorithms: flower pollination algorithm, social spider algorithm, firefly algorithm, cuckoo search algorithm and bat algorithm. Also, two of the filter-based techniques are boundary detection algorithms, inspired by edge detection in image processing and edge selection in ant colony optimization. Two different sets of experiments were performed in order to evaluate the performance of the proposed techniques (wrapper-based and filter-based). All experiments were performed on four datasets containing three popular e-fraud types: credit card fraud, email spam and phishing email. In addition, experiments were performed on 20 datasets provided by the well-known UCI data repository. The results show that the proposed filter-based techniques excellently improved SVM training speed in 100% (24 out of 24) of the datasets used for evaluation, without significantly affecting SVM classification quality. Moreover, experimental results also show that the wrapper-based techniques consistently improved SVM predictive accuracy in 78% (18 out of 23) of the datasets used for evaluation and simultaneously improved SVM training speed in all cases. Furthermore, two different statistical tests were conducted to further validate the credibility of the results: Freidman’s test and Holm’s post-hoc test. The statistical test results reveal that the proposed filter-based and wrapper-based techniques are significantly faster, compared to standard SVM and some existing instance selection techniques, in all cases. Moreover, statistical test results also reveal that Cuckoo Search Instance Selection Algorithm outperform all the proposed techniques, in terms of speed. Overall, the proposed techniques have proven to be fast and accurate ML-based e-fraud detection techniques, with improved training speed, predictive accuracy and storage reduction. In real life application, such as video surveillance and intrusion detection systems, that require a classifier to be trained very quickly for speedy classification of new target concepts, the filter-based techniques provide the best solutions; while the wrapper-based techniques are better suited for applications, such as email filters, that are very sensitive to slight changes in predictive accuracy

    Improving Organizational Information Security Strategy via Meso-Level Application of Situational Crime Prevention to the Risk Management Process

    Get PDF
    Existing approaches to formulating IS security strategy rely primarily on the risk management process and the application of baseline security standards (e.g., ISO 27002, previously ISO 17799). The use of existing approaches generally leads to measures that emphasize target hardening and incident detection. While such measures are appropriate and necessary, they do not capitalize on other measures, including those that surface when situational crime prevention (SCP) is applied to specific crimes. In particular, existing approaches do not typically surface measures designed to reduce criminal perceptions of the net benefits of the crime, or justification and provocation to commit the crime. However, the methods prescribed to-date for implementing SCP are cumbersome, requiring micro-level, individual analysis of crimes. In the current article, we propose that concepts derived from SCP can be strategically applied at an intermediate (meso) level of aggregation. We show that such meso-level application of SCP, when combined with the traditional risk management process, can reduce residual information security risk by identifying new strategies for combating computer crime. Using three illustrative cases, we demonstrate that the application of the proposed strategic approach does surface meaningful countermeasures not identified by the traditional risk management process alone
    • …
    corecore