1,501 research outputs found

    Markov mezƑk a kĂ©pmodellezĂ©sben, alkalmazĂĄsuk az automatikus kĂ©pszegmentĂĄlĂĄs terĂŒletĂ©n = Markovian Image Models: Applications in Unsupervised Image Segmentation

    Get PDF
    1) KifejlesztettĂŒnk egy olyan szĂ­n Ă©s textĂșra alapĂș szegmentĂĄlĂł MRF algoritmust, amely alkalmas egy kĂ©p automatikus szegmentĂĄlĂĄsĂĄt elvĂ©gezni. Az eredmĂ©nyeinket az Image and Vision Computing folyĂłiratban publikĂĄltuk. 2) KifejlesztettĂŒnk egy Reversible Jump Markov Chain Monte Carlo technikĂĄn alapulĂł automatikus kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, melyet sikeresen alkalmaztunk szĂ­nes kĂ©pek teljesen automatikus szegmentĂĄlĂĄsĂĄra. Az eredmĂ©nyeinket a BMVC 2004 konferenciĂĄn Ă©s az Image and Vision Computing folyĂłiratban publikĂĄltuk. 3) A modell többrĂ©tegƱ tovĂĄbbfejlesztĂ©sĂ©t alkalmaztuk video objektumok szĂ­n Ă©s mozgĂĄs alapĂș szegmentĂĄlĂĄsĂĄra, melynek eredmĂ©nyeit a HACIPPR 2005 illetve az ACCV 2006 nemzetközi konferenciĂĄkon publikĂĄltuk. SzintĂ©n ehhez az alapproblĂ©mĂĄhoz kapcsolĂłdik HorvĂĄth PĂ©ter hallgatĂłmmal az optic flow szamĂ­tĂĄsĂĄval illetve szĂ­n, textĂșra Ă©s mozgĂĄs alapĂș GVF aktĂ­v kontĂșrral kapcsoltos munkĂĄink. TDK dolgozata elsƑ helyezĂ©st Ă©rt el a 2004-es helyi versenyen, az eredmĂ©nyeinket pedig a KEPAF 2004 konferenciĂĄn publikĂĄltuk. 4) HorvĂĄth PĂ©ter PhD hallgatĂłmmal illetve az franciaorszĂĄgi INRIA Ariana csoportjĂĄval, kidolgoztunk egy olyan kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, amely a szegmentĂĄlandĂł objektum alakjĂĄt is figyelembe veszi. Az eredmĂ©nyeinket az ICPR 2006 illetve az ICCVGIP 2006 konferenciĂĄn foglaltuk össze. A modell elƑzmĂ©nyekĂ©nt kidolgoztunk tovĂĄbbĂĄ egy alakzat-momemntumokon alapulĂł aktĂ­v kontĂșr modellt, amelyet a HACIPPR 2005 konferenciĂĄn publikĂĄltunk. | 1) We have proposed a monogrid MRF model which is able to combine color and texture features in order to improve the quality of segmentation results. We have also solved the estimation of model parameters. This work has been published in the Image and Vision Computing journal. 2) We have proposed an RJMCMC sampling method which is able to identify multi-dimensional Gaussian mixtures. Using this technique, we have developed a fully automatic color image segmentation algorithm. Our results have been published at BMVC 2004 international conference and in the Image and Vision Computing journal. 3) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues (such as color, texture, or motion). This work has been published at HACIPPR 2005 and ACCV 2006 international conferences. The work on optic flow computation and color-, texture-, and motion-based GVF active contours doen with my student, Mr. Peter Horvath, won a first price at the local Student Research Competition in 2004. Results have been presented at KEPAF 2004 conference. 4) A new shape prior, called 'gas of circles' has been introduced using active contour models. This work is done in collaboration with the Ariana group of INRIA, France and my PhD student, Mr. Peter Horvath. Results are published at the ICPR 2006 and ICCVGIP 2006 conferences. A preliminary study on active contour models using shape-moments has also been done, these results are published at HACIPPR 2005

    A New Phase Field Model of a `Gas of Circles' for Tree Crown Extraction from Aerial Images

    Get PDF
    We describe a model for tree crown extraction from aerial images, a problem of great practical importance for the forestry industry. The novelty lies in the prior model of the region occupied by tree crowns in the image, which is a phase field version of the higher-order active contour inflection point 'gas of circles' model. The model combines the strengths of the inflection point model with those of the phase field framework: it removes the 'phantom circles' produced by the original 'gas of circles' model, while executing two orders of magnitude faster than the contour-based inflection point model. The model has many other areas of application e.g., to imagery in nanotechnology, biology, and physics

    A Multispectral Data Model for Higher-Order Active Contours and its Application to Tree Crown Extraction

    Get PDF
    Forestry management makes great use of statistics concerning the individual trees making up a forest, but the acquisition of this information is expensive. Image processing can potentially both reduce this cost and improve the statistics. The key problem is the delineation of tree crowns in aerial images. The automatic solution of this problem requires considerable prior information to be built into the image and region models. Our previous work has focused on including shape information in the region model; in this paper we examine the image model. The aerial images involved have three bands. We study the statistics of these bands, and construct both multispectral and single band image models. We combine these with a higher-order active contour model of a `gas of circles' in order to include prior shape information about the region occupied by the tree crowns in the image domain. We compare the results produced by these models on real aerial images and conclude that multiple bands improves the quality of the segmentation. The model has many other potential applications, e.g. to nano-technology, microbiology, physics, and medical imaging

    Quantifying the urban forest environment using dense discrete return LiDAR and aerial color imagery for segmentation and object-level biomass assessment

    Get PDF
    The urban forest is becoming increasingly important in the contexts of urban green space and recreation, carbon sequestration and emission offsets, and socio-economic impacts. In addition to aesthetic value, these green spaces remove airborne pollutants, preserve natural resources, and mitigate adverse climate changes, among other benefits. A great deal of attention recently has been paid to urban forest management. However, the comprehensive monitoring of urban vegetation for carbon sequestration and storage is an under-explored research area. Such an assessment of carbon stores often requires information at the individual tree level, necessitating the proper masking of vegetation from the built environment, as well as delineation of individual tree crowns. As an alternative to expensive and time-consuming manual surveys, remote sensing can be used effectively in characterizing the urban vegetation and man-made objects. Many studies in this field have made use of aerial and multispectral/hyperspectral imagery over cities. The emergence of light detection and ranging (LiDAR) technology, however, has provided new impetus to the effort of extracting objects and characterizing their 3D attributes - LiDAR has been used successfully to model buildings and urban trees. However, challenges remain when using such structural information only, and researchers have investigated the use of fusion-based approaches that combine LiDAR and aerial imagery to extract objects, thereby allowing the complementary characteristics of the two modalities to be utilized. In this study, a fusion-based classification method was implemented between high spatial resolution aerial color (RGB) imagery and co-registered LiDAR point clouds to classify urban vegetation and buildings from other urban classes/cover types. Structural, as well as spectral features, were used in the classification method. These features included height, flatness, and the distribution of normal surface vectors from LiDAR data, along with a non-calibrated LiDAR-based vegetation index, derived from combining LiDAR intensity at 1064 nm with the red channel of the RGB imagery. This novel index was dubbed the LiDAR-infused difference vegetation index (LDVI). Classification results indicated good separation between buildings and vegetation, with an overall accuracy of 92% and a kappa statistic of 0.85. A multi-tiered delineation algorithm subsequently was developed to extract individual tree crowns from the identified tree clusters, followed by the application of species-independent biomass models based on LiDAR-derived tree attributes in regression analysis. These LiDAR-based biomass assessments were conducted for individual trees, as well as for clusters of trees, in cases where proper delineation of individual trees was impossible. The detection accuracy of the tree delineation algorithm was 70%. The LiDAR-derived biomass estimates were validated against allometry-based biomass estimates that were computed from field-measured tree data. It was found out that LiDAR-derived tree volume, area, and different distribution parameters of height (e.g., maximum height, mean of height) are important to model biomass. The best biomass model for the tree clusters and the individual trees showed an adjusted R-Squared value of 0.93 and 0.58, respectively. The results of this study showed that the developed fusion-based classification approach using LiDAR and aerial color (RGB) imagery is capable of producing good object detection accuracy. It was concluded that the LDVI can be used in vegetation detection and can act as a substitute for the normalized difference vegetation index (NDVI), when near-infrared multiband imagery is not available. Furthermore, the utility of LiDAR for characterizing the urban forest and associated biomass was proven. This work could have significant impact on the rapid and accurate assessment of urban green spaces and associated carbon monitoring and management

    SPATIAL VARIABILITY IN FOREST FUELS: SIMULATION MODELING AND EFFECTS ON FIRE BEHAVIOR

    Get PDF
    Forests in the western United States and elsewhere face a growing crisis arising from global warming, changes in fuel beds and an increasing human population. Fire management policy emphasizes fuel treatments, such as thinning and prescribed burning, to remedy this situation because fuels are the one component of the problem that we can directly affect through management action. At present, however, the tools we have for the evaluation of fuel treatments are inadequate because they do not describe the fuel bed, or effects of modifications to the fuel bed on fire behavior in sufficient detail. The work described here presents a system that has potential to address the shortcomings of current approaches. In the first chapter, to improve our ability to represent wildland fuels, a three dimensional spatially explicit fuel model, FUEL3D, is presented which represents fuels at a level of detail comparable to what we can actually measure: stands as collections of individual trees, with branches and foliage. In conjunction with new, physical fire models, detailed fire behavior simulations can be carried out using fuels represented with FUEL3D as inputs. This system thus comprises a simulation laboratory which will greatly enhance our capabilities to evaluate fuel treatments and strengthen our understanding of fire and fuel interactions. In the second chapter, this system is demonstrated in an exploratory simulation study which examines the impact of spatial variability within an individual tree crown on fire behavior. Results demonstrate that the distribution of fuel within a tree crown significantly affects the rate of fuel consumption, as well as the timing, duration and magnitude of heat produced. This suggests that modeling of both crown fire initiation and propagation would benefit from more detailed description of crown fuels. In third chapter a replicated series of stand scale fire simulations is carried out to examine variability in forward spread rate; accelerated spread rates endanger fire fighters. Substantial variability is observed to arise from fine scale fuel-atmosphere-fire interactions which are not easily predicted beforehand. A new strategy is proposed in which physical fire models are used to quantify the potential drivers of variability in fire behavior

    Proceedings of the 7th International Conference on Functional-Structural Plant Models, SaariselkÀ, Finland, 9 - 14 June 2013

    Get PDF

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    • 

    corecore