4,316 research outputs found

    Qualitative Analysis of Polycycles in Filippov Systems

    Full text link
    In this paper, we are concerned about the qualitative behaviour of planar Filippov systems around some typical minimal sets, namely, polycycles. In the smooth context, a polycycle is a simple closed curve composed by a collection of singularities and regular orbits, inducing a first return map. Here, this concept is extended to Filippov systems by allowing typical singularities lying on the switching manifold. Our main goal consists in developing a method to investigate the unfolding of polycycles in Filippov systems. In addition, we applied this method to describe bifurcation diagrams of Filippov systems around certain polycycles

    An improved return-mapping scheme for nonsmooth yield surfaces: PART I - the Haigh-Westergaard coordinates

    Full text link
    The paper is devoted to the numerical solution of elastoplastic constitutive initial value problems. An improved form of the implicit return-mapping scheme for nonsmooth yield surfaces is proposed that systematically builds on a subdifferential formulation of the flow rule. The main advantage of this approach is that the treatment of singular points, such as apices or edges at which the flow direction is multivalued involves only a uniquely defined set of non-linear equations, similarly to smooth yield surfaces. This paper (PART I) is focused on isotropic models containing: a)a) yield surfaces with one or two apices (singular points) laying on the hydrostatic axis; b)b) plastic pseudo-potentials that are independent of the Lode angle; c)c) nonlinear isotropic hardening (optionally). It is shown that for some models the improved integration scheme also enables to a priori decide about a type of the return and investigate existence, uniqueness and semismoothness of discretized constitutive operators in implicit form. Further, the semismooth Newton method is introduced to solve incremental boundary-value problems. The paper also contains numerical examples related to slope stability with available Matlab implementation.Comment: 25 pages, 10 figure

    On a global implicit function theorem for locally Lipschitz maps via nonsmooth critical point theory

    Full text link
    We prove a non-smooth generalization of the global implicit function theorem. More precisely we use the non-smooth local implicit function theorem and the non-smooth critical point theory in order to prove a non-smooth global implicit function theorem for locally Lipschitz functions. A comparison between several global inversion theorems is discussed

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte
    corecore