1,511 research outputs found

    A transformation-driven approach to automate feedback verification results

    Get PDF
    International audienceThe integration of formal verification methods in modeling activities is a key issue to ensure the correctness of complex system design models. In this purpose, the most common approach consists in defining a translational semantics mapping the abstract syntax of the designer dedicated Domain-Specific Modeling Language (DSML) to a formal verification dedicated semantic domain in order to reuse the available powerful verification technologies. Formal verification is thus usually achieved using model transformations. However, the verification results are available in the formal domain which significantly impairs their use by the system designer which is usually not an expert of the formal technologies. In this paper, we introduce a novel approach based on Higher-Order transformations that analyze and instrument the transformation that expresses the semantics in order to produce traceability data to automatize the back propagation of verification results to the DSML end-user

    Software product line for semantic specification of block libraries in dataflow languages

    Get PDF
    10 pagesDataflow modelling languages such as SCADE or Simulink are the de-facto standard for the Model Driven Development of safety critical embedded control and command systems. Software is mainly being produced by Automated Code Generators whose correctness can only be assessed meaningfully if the input language semantics is well known. These semantics share a common part but are mainly defined through block libraries. The writing of a complete formal specification for the block libraries of the usual languages is highly challenging due to the high variability of the structure and semantics of each block. This contribution relates the use of software product line principles in the design of a domain specific language targeting the formal specification of block libraries. It summarizes the advantages of this DSL regarding the writing, validation and formal verification of such specifications. These experiments have been carried out in the context of the GeneAuto embedded code generator project targeting Simulink and Scicos; and are being extended and applied in its follow ups projects ProjectP and Hi-MoCo

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Combining mathematical programming and SysML for component sizing as applied to hydraulic systems

    Get PDF
    In this research, the focus is on improving a designer's capability to determine near-optimal sizes of components for a given system architecture. Component sizing is a hard problem to solve because of the presence of competing objectives, requirements from multiple disciplines, and the need for finding a solution quickly for the architecture being considered. In current approaches, designers rely on heuristics and iterate over the multiple objectives and requirements until a satisfactory solution is found. To improve on this state of practice, this research introduces advances in the following two areas: a.) Formulating a component sizing problem in a manner that is convenient to designers and b.) Solving the component sizing problem in an efficient manner so that all of the imposed requirements are satisfied simultaneously and the solution obtained is mathematically optimal. In particular, an acausal, algebraic, equation-based, declarative modeling approach is taken to solve component sizing problems efficiently. This is because global optimization algorithms exist for algebraic models and the computation time is considerably less as compared to the optimization of dynamic simulations. In this thesis, the mathematical programming language known as GAMS (General Algebraic Modeling System) and its associated global optimization solvers are used to solve component sizing problems efficiently. Mathematical programming languages such as GAMS are not convenient for formulating component sizing problems and therefore the Systems Modeling Language developed by the Object Management Group (OMG SysML ) is used to formally capture and organize models related to component sizing into libraries that can be reused to compose new models quickly by connecting them together. Model-transformations are then used to generate low-level mathematical programming models in GAMS that can be solved using commercial off-the-shelf solvers such as BARON (Branch and Reduce Optimization Navigator) to determine the component sizes that satisfy the requirements and objectives imposed on the system. This framework is illustrated by applying it to an example application for sizing a hydraulic log splitter.M.S.Committee Co-Chair: Paredis, Chris ; Committee Co-Chair: Schaefer, Dirk; Committee Member: Goel, Asho

    Model Generation for Generalized Quantifiers via Answer Set Programming

    Get PDF
    For the semantic evaluation of natural language sentences, in particular those containing generalized quantifiers, we subscribe to the generate and test methodology to produce models of such sentences. These models are considered as means by which the sentences can be interpreted within a natural language processing system. The goal of this paper is to demonstrate that answer set programming is a simple, efficient and particularly well suited model generation technique for this purpose, leading to a straightforward implementation

    Book reports

    Get PDF
    • …
    corecore