38 research outputs found

    CI/OFDM Underwater Acoustic Communication System

    Get PDF

    A Study on the Dynamic Manipulation of Structured Light Using Orbital Angular Momentum for Wireless Underwater Links

    Get PDF
    In this work, the dynamic generation of structured light modes was demonstrated using coherent, co-aligned beams carrying orbital angular momentum (CCOAM). These modes are created using sources with blue/green wavelengths to study the effects of propagation and applications underwater maritime environments. Three techniques are discussed and are compared to simulation using a Rayleigh-Sommerfeld propagation kernel: concentric phase plates, Mach-Zehnder Interferometry, and the HOBBIT (Higher Order Bessel Beams Integrated in Time). These three systems are used to examine the modal integrity, controllability, and unique applications. Structured CCOAM modes were first demonstrated using a 450 nm source and concentric phase plates and were propagated through 3 meters of turbid underwater environments. Beam coherence was measured using image registration, and the wavefronts were found to maintain their structure despite propagation through extreme turbidity. In addition, the source was amplitude modulated to verify that the mode structure can carry an amplitude modulation signal. Next, an interferometry approach is used so that the two interfering modes can be controlled separately. The relative phase is controlled between the two interfering modes by manipulating the optical path length that each mode travels using an electro-optic phase modulator. Phase modulation allows for precise yet limited control of the wavefront and structure. Two setups were examined, a fiber-to-free-space Mach-Zehnder interferometer, and a HOBBIT system with two inputs. Phase only control was demonstrated using sinusoidal modulation and an orthogonal frequency division multiplexing (OFDM) signal applied to the phase modulator. The modulated signals were successfully transmitted 3 and 6 meters through turbid water. Phase only modulation allowed for the transmission of a constant-amplitude signal, which provides nonlinear manipulation of the signal, such as amplification and harmonic generation, which are both crucial in creating high-power signals in the visible regime. The interferometry setups are very sensitive and a phase drift was found to occur due to temperature fluctuations and small movements of optical fiber in the setup, so a preliminary phase-lock loop was designed and tested to eliminate the phase drift. Without applied modulation, a RMS phase error of less than λ/30 was measured. Lastly an acousto-optic deflector (AOD) was added to the HOBBIT setup, which adds mode tunability in addition to amplitude and phase control. The traveling acoustic wave also induces a frequency shift in the optical signal producing a continuous modulation of the output CCOAM mode. This is demonstrated by using a pulsed 450 nm diode to strobe the signal. Operation in pulsed mode enables the system to perform a self-referencing wavefront recovery from which the total OAM was extracted

    Implementation of carrier interferometry OFDM by using pulse shaping technique in frequency domain

    Get PDF
    This paper presents a novel design of carrier interferometry (Cl) spreading codes by Using inverse fast Fourier transform (IFFT) instead of linear transform matrix. Pulse shaping method in frequency domain is used to generate different carrier interferometry orthogonal frequency division multiplexing (CI/OFDM) signals. Peak-to-average power ratio (PAPR) performance has been compared among OFDM, original CI/OFDM and our proposal. Simulation results show that our proposal could simplify the system implementation and improve the signal processing efficiency without PAPR performance degradation

    Performance evaluation of T-transform based OFDM in underwater acoustic channels

    Get PDF
    PhD ThesisRecently there has been an increasing trend towards the implementation of orthogonal frequency division multiplexing (OFDM) based multicarrier communication systems in underwater acoustic communications. By dividing the available bandwidth into multiple sub-bands, OFDM systems enable reliable transmission over long range dispersive channels. However OFDM is prone to impairments such as severe frequency selective fading channels, motioned induced Doppler shift and high peak-to-average-power ratio (PAPR). In order to fully exploit the potential of OFDM in UWA channels, those issues have received a great deal of attention in recent research. With the aim of improving OFDM's performance in UWA channels, a T-transformed based OFDM system is introduced using a low computational complexity T-transform that combines the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT) into a single fast orthonormal unitary transform. Through real-world experiment, performance comparison between the proposed T-OFDM system and conventional OFDM system revealed that T-OFDM performs better than OFDM with high code rate in frequency selective fading channels. Furthermore, investigation of different equalizer techniques have shown that the limitation of ZF equalizers affect the T-OFDM more (one bad equalizer coefficient affects all symbols) and so developed a modified ZF equalizer with outlier detection which provides major performance gain without excessive computation load. Lastly, investigation of PAPR reduction methods delineated that T-OFDM has inherently lower PAPR and it is also far more tolerant of distortions introduced by the simple clipping method. As a result, lower PAPR can be achieved with minimal overhead and so outperforming OFDM for a given power limit at the transmitter

    Underwater Communication Acoustic Transducers: A Technology Review

    Get PDF
    This paper provides a comprehensive review on transducer technologies for underwater communications. The popularly used communication transducers, such as piezoelectric acoustic transducers, electromagnetic acoustic transducers, and acousto-optic devices are reviewed in detail. The reasons that common air communication technologies are invalid die to the differences between the media of air and water are addresses. Because of the abilities to overcome challenges the complexity of marine environments, piezoelectric acoustic transducers are playing the major underwater communication roles for science, surveillance, and Naval missions. The configuration and material properties of piezoelectric transducers effects on signal output power, beamwidth, amplitude, and other properties are discussed. The methods of code and decode communication information signals into acoustic waves are also presented. Finally, several newly developed piezoelectric transducers are recommended for future studies

    MIMO underwater acoustic communications over time-varying channels: from theory to practice

    Get PDF
    Despite more than 70% of our planet surface is covered by water, today the underwater world can still be considered largely unknown. Rivers, lakes, seas and oceans have always been a fundamental resource for human life development, but at the same time they have often represented natural obstacles very hard to surmount. The most impressive example is probably given by the ocean, whose vastness severely limited geographical explorations and discoveries for tens of centuries. Anyway, the growing curiosity about what happens below the water surface has gradually led man to immerse in this unknown environment, trying to overcome its inaccessibility and figure out its secrets. Underwater investigation and exploring have been increasingly supported by technology, advanced over time for different purposes (military, commercial, scientific). In this regard, providing a communication link between remote users has been recognized as one of the main issues to be addressed. The first significant solutions derived from the radio-frequency world, subject of study since the 19th century. Unfortunately both wired and wireless RF inspired signal propagation strategies were not evaluated as successful. The former ones, since considering the deployment of meters (up to kilometers) of cable in depth, were too costly and difficult, while the latter ones did not offer good performance in terms of communication range due to signal attenuation. An alternative way, examined with particular interest from the beginning of the 20th century, has been that one offered by acoustics. Actually, the study of sound and its propagation through different media has been an intriguing topic since the Old World Age, hence the attempt of messaging underwater has seemed to be a great opportunity to convey theoretical principles in a real application. In addition, not only humans but also marine animals use acoustic waves to communicate, even over several kilometers distances as demonstrated by whales. So, since already existing in nature, acoustic communications have been considered as potentially successful, furthermore representing an effective trade-off between feasibility and performance, especially if compared to the other electromagnetic signals-based methods. Communication over RF channels has been extensively investigated so as to become a mature technology. The thorough knowledge about OSI (Open Systems Interconnection) model physical layer issues has allowed the researchers attention to be drawn to the upper layers. Following this direction, the recent advances in technology in this field have been accomplished mainly due to novelties in networks managing rather than to enhancements in the signal propagation study. Moving to acoustics, unfortunately this approach results to be failing if applied in the underwater scenario, as the major challenges rise indeed from physics matters. The underwater environment is varied and variable, so understanding the mechanisms that govern the propagation of sound in water is a key element for the design of a well-performing communication system. In this sense, the physical layer has therefore regained the centrality that has been diminished in other contexts. The underwater acoustic communications can be adopted in a wide range of applications. The best-known are coastal monitoring, target detection, AUVs (Autonomous Underwater Vehicles) remote control, tsunami alarm, environmental data collection and transmission. Those ones are very specific activities, so the devices to be employed must sometimes meet very strict requirements. In this regard, the solutions commercially available provide good performance (that are paid in terms of high costs). On the other hand, the fact that hardware and software are usually copyrighted leads to have a closed system. Having reconfigurable devices is instead an opportunity to match the technology with the environment features and variations, especially in real-time applications. Recently, the need to overcome these constraints has encouraged the debate about underwater technology challenges. The work by Demirors et al. [1] reports an interesting discussion about the implementation of software-defined underwater acoustic networks (UWANs), highlighting how this solution can provide enhancements in terms of software portability, computational capacity, energy efficiency and real-time reconfigurability. Furthermore, the authors propose the architecture of a software-defined acoustic modem and evaluate its performance and capabilities with tank and lake experiments. Considering the comments outlined above, the following dissertation deals with the design of an acoustic communication system. The preliminary theoretical analysis regarding physical layer concerns, such as signal propagation and channel behavior, represents the starting point from which several proposals regarding the implementation of UWANs are introduced. In particular the context of Multiple-Input Multiple-Output (MIMO) communications is investigated, presenting several solutions about transmission schemes and receiver implementation. Furthermore, concerning UWANs management, some strategies for access and error control, established at the data link layer level, are detailed. It is worth highlighting that the goal of this contribution is not to present a disjointed discussion about the topics just listed. The objective is instead to propose practical solutions developed hand in hand with theory, making choices firstly by looking at what nature allows

    Measurements and characterization of optical wireless communications through biological tissues

    Get PDF
    Abstract. Radio frequency (RF) has been predominantly utilized for wireless transmission of data across biological tissues. However, RF communications need to address several challenges like interference, safety, security, and privacy, which often hamper the communications through the tissues. To mitigate these challenges, light-based communication can be exploited, as optical wireless communications have unique advantages in terms of security, interference and safety. In this thesis work, we have utilized near-infrared (NIR) light to investigate the feasibility of optical wireless data transfer through biological tissues. To understand the basics of optical communications through biological tissues (OCBT), fresh meat samples and optical phantoms have been used as models of living biological tissues. An experimental testbed containing a data modulated light source and a photodetector was implemented to carry out different measurements regarding the OCBT concept. We have explored the influence of parameters like transmitted optical power, temperature of the tissue, tissue thickness, and position of the light source on the performance of the light-based through-tissue communication system. Analysis of the measurement data allowed us to compare and characterize the effect of used optical elements for better performance evaluation of the optical communication system. We have successfully transmitted a high-resolution image file through a 3 cm thick pork tissue sample. The maximum transmitted power through the tissue sample during the optical communication was 231.4 mW/cm2, which is well below the limits defined by standard of safety regulation. A data rate of 22 kilobits per second has been achieved with the experimental system. Practical limitations of the current testbed prevented obtaining a higher data throughput. The results indicate a dependence of optical received power with respect to the tissue temperature. Moreover, we found both thickness and compositional differences of the biological tissues have a significant impact on the transmittance rate. This thesis work can be considered as a part of the development of 6G technology. The outcomes of this pilot study are very promising, and in the future, numerous potential applications based on OCBT could be developed, including wireless communications to implanted devices, in-body sensors, smart pills, and others

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore