2,004 research outputs found

    The study of probability model for compound similarity searching

    Get PDF
    Information Retrieval or IR system main task is to retrieve relevant documents according to the users query. One of IR most popular retrieval model is the Vector Space Model. This model assumes relevance based on similarity, which is defined as the distance between query and document in the concept space. All currently existing chemical compound database systems have adapt the vector space model to calculate the similarity of a database entry to a query compound. However, it assumes that fragments represented by the bits are independent of one another, which is not necessarily true. Hence, the possibility of applying another IR model is explored, which is the Probabilistic Model, for chemical compound searching. This model estimates the probabilities of a chemical structure to have the same bioactivity as a target compound. It is envisioned that by ranking chemical structures in decreasing order of their probability of relevance to the query structure, the effectiveness of a molecular similarity searching system can be increased. Both fragment dependencies and independencies assumption are taken into consideration in achieving improvement towards compound similarity searching system. After conducting a series of simulated similarity searching, it is concluded that PM approaches really did perform better than the existing similarity searching. It gave better result in all evaluation criteria to confirm this statement. In terms of which probability model performs better, the BD model shown improvement over the BIR model

    ProtNN: Fast and Accurate Nearest Neighbor Protein Function Prediction based on Graph Embedding in Structural and Topological Space

    Full text link
    Studying the function of proteins is important for understanding the molecular mechanisms of life. The number of publicly available protein structures has increasingly become extremely large. Still, the determination of the function of a protein structure remains a difficult, costly, and time consuming task. The difficulties are often due to the essential role of spatial and topological structures in the determination of protein functions in living cells. In this paper, we propose ProtNN, a novel approach for protein function prediction. Given an unannotated protein structure and a set of annotated proteins, ProtNN finds the nearest neighbor annotated structures based on protein-graph pairwise similarities. Given a query protein, ProtNN finds the nearest neighbor reference proteins based on a graph representation model and a pairwise similarity between vector embedding of both query and reference protein-graphs in structural and topological spaces. ProtNN assigns to the query protein the function with the highest number of votes across the set of k nearest neighbor reference proteins, where k is a user-defined parameter. Experimental evaluation demonstrates that ProtNN is able to accurately classify several datasets in an extremely fast runtime compared to state-of-the-art approaches. We further show that ProtNN is able to scale up to a whole PDB dataset in a single-process mode with no parallelization, with a gain of thousands order of magnitude of runtime compared to state-of-the-art approaches

    Application of approximate graph matching techniques for searching databases of two-dimensional chemical structures

    Get PDF
    This paper proposes the application of approximate graph matching techniques for best-match searching of two-dimensional chemical structure databases based upon topology. Chemical structures are represented as labeled graphs, each atom a node in the graph and each bond an edge. By inserting; deleting and renaming nodes/edges, one structure may be transformed into another. We define similarity as the weighted sum of the costs of these edit operations. An algorithm for approximating the minimum distance between two graphs based on simulated annealing is applied. Best-match searches are performed utilizing this pre-computed distance information and applying the concepts of triangle inequality to prune out structures from the database which could not possibly satisfy the query. We also extend the best-match retrieval by allowing subgraphs of a data graph to be freely removed. The result is a technique which extends existing substructure search techniques by allowing certain distances to exist between the query and a substructure of the data graph

    Chemotion ELN : an Open Source electronic lab notebook for chemists in academia

    Get PDF
    The development of an electronic lab notebook (ELN) for researchers working in the field of chemical sciences is presented. The web based application is available as an Open Source software that offers modern solutions for chemical researchers. The Chemotion ELN is equipped with the basic functionalities necessary for the acquisition and processing of chemical data, in particular the work with molecular structures and calculations based on molecular properties. The ELN supports planning, description, storage, and management for the routine work of organic chemists. It also provides tools for communicating and sharing the recorded research data among colleagues. Meeting the requirements of a state of the art research infrastructure, the ELN allows the search for molecules and reactions not only within the user’s data but also in conventional external sources as provided by SciFinder and PubChem. The presented development makes allowance for the growing dependency of scientific activity on the availability of digital information by providing Open Source instruments to record and reuse research data. The current version of the ELN has been using for over half of a year in our chemistry research group, serves as a common infrastructure for chemistry research and enables chemistry researchers to build their own databases of digital information as a prerequisite for the detailed, systematic investigation and evaluation of chemical reactions and mechanisms
    • …
    corecore