831 research outputs found

    Rough Set Granularity in Mobile Web Pre-Caching

    Get PDF
    Mobile Web pre-caching (Web prefetching and caching) is an explication of performance enhancement and storage limitation ofmobile devices

    Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Research (Preprint)

    Full text link
    In 2022, over half of the web traffic was accessed through mobile devices. By reducing the energy consumption of mobile web apps, we can not only extend the battery life of our devices, but also make a significant contribution to energy conservation efforts. For example, if we could save only 5% of the energy used by web apps, we estimate that it would be enough to shut down one of the nuclear reactors in Fukushima. This paper presents a comprehensive overview of energy-saving experiments and related approaches for mobile web apps, relevant for researchers and practitioners. To achieve this objective, we conducted a systematic literature review and identified 44 primary studies for inclusion. Through the mapping and analysis of scientific papers, this work contributes: (1) an overview of the energy-draining aspects of mobile web apps, (2) a comprehensive description of the methodology used for the energy-saving experiments, and (3) a categorization and synthesis of various energy-saving approaches.Comment: Preprint for 2023 IEEE/ACM 10th International Conference on Mobile Software Engineering and Systems (MOBILESoft): Energy-Saving Strategies for Mobile Web Apps and their Measurement: Results from a Decade of Researc

    Re-designing Dynamic Content Delivery in the Light of a Virtualized Infrastructure

    Get PDF
    We explore the opportunities and design options enabled by novel SDN and NFV technologies, by re-designing a dynamic Content Delivery Network (CDN) service. Our system, named MOSTO, provides performance levels comparable to that of a regular CDN, but does not require the deployment of a large distributed infrastructure. In the process of designing the system, we identify relevant functions that could be integrated in the future Internet infrastructure. Such functions greatly simplify the design and effectiveness of services such as MOSTO. We demonstrate our system using a mixture of simulation, emulation, testbed experiments and by realizing a proof-of-concept deployment in a planet-wide commercial cloud system.Comment: Extended version of the paper accepted for publication in JSAC special issue on Emerging Technologies in Software-Driven Communication - November 201

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    A novel network architecture for train-to-wayside communication with quality of service over heterogeneous wireless networks

    Get PDF
    In the railway industry, there are nowadays different actors who would like to send or receive data from the wayside to an onboard device or vice versa. These actors are e.g., the Train Operation Company, the Train Constructing Company, a Content Provider, etc. This requires a communication module on each train and at the wayside. These modules interact with each other over heterogeneous wireless links. This system is referred to as the Train-to-Wayside Communication System (TWCS). While there are already a lot of deployments using a TWCS, the implementation of quality of service, performance enhancing proxies (PEP) and the network mobility functions have not yet been fully integrated in TWCS systems. Therefore, we propose a novel and modular IPv6-enabled TWCS architecture in this article. It jointly tackles these functions and considers their mutual dependencies and relationships. DiffServ is used to differentiate between service classes and priorities. Virtual local area networks are used to differentiate between different service level agreements. In the PEP, we propose to use a distributed TCP accelerator to optimize bandwidth usage. Concerning network mobility, we propose to use the SCTP protocol (with Dynamic Address Reconfiguration and PR-SCTP extensions) to create a tunnel per wireless link, in order to support the reliable transmission of data between the accelerators. We have analyzed different design choices, pinpointed the main implementation challenges and identified candidate solutions for the different modules in the TWCS system. As such, we present an elaborated framework that can be used for prototyping a fully featured TWCS

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists
    corecore