205 research outputs found

    Execution replay and debugging

    Full text link
    As most parallel and distributed programs are internally non-deterministic -- consecutive runs with the same input might result in a different program flow -- vanilla cyclic debugging techniques as such are useless. In order to use cyclic debugging tools, we need a tool that records information about an execution so that it can be replayed for debugging. Because recording information interferes with the execution, we must limit the amount of information and keep the processing of the information fast. This paper contains a survey of existing execution replay techniques and tools.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AADebug 2000), August 2000, Munich. cs.SE/001003

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure

    Master of Science

    Get PDF
    thesisConcurrent programs are extremely important for efficiently programming future HPC systems. Large scientific programs may employ multiple processes or threads to run on HPC systems for days. Reliability is an essential requirement of existing concurrent programs. Therefore, verification of concurrent programs becomes increasingly important. Today we have two significant challenges in developing concurrent program verification tools: The first is scalability. Since new types of concurrent programs keep being created, verification tools need to scale to handle all these new types of programs. The second is providing formal coverage guarantee. Dynamic verification tools always face a huge schedule space. Both these capabilities must exist for testing programs that follow multiple concurrency models. Most current dynamic verification tools can only explore either thread level or process level schedules. Consequently, they fail to verify hybrid programs. Exploring mixed process and thread level schedules is not an ideal solution because the state space will grow exponentially in both levels. It is hard to systematically traverse these mixed schedules. Therefore, our approach is to determinize all concurrent APIs except one API whose schedules will then be explored. To improve search efficiency, we proposed a random-walk based heuristic algorithm. We observed many concurrent programs and concluded some common structures of them. Based on the existence of these structures, we can make dynamic verification tools focusing on specific regions and bypassing regions of less interest. We propose a random sampling of executions in the regions of less interest

    Doctor of Philosophy

    Get PDF
    dissertationMessage passing (MP) has gained a widespread adoption over the years, so much so, that even heterogeneous embedded multicore systems are running programs that are developed using message passing libraries. Such a phenomenon is a shift in computing practices, since, traditionally MP programs have been developed specifically for high performance computing. With growing importance and the complexity of MP programs in today's times, it becomes absolutely imperative to have formal tools and sound methodologies that can help reason about the correctness of the program. It has been demonstrated by many researchers in the area of concurrent program verification that a suitable strategy to verify programs which rely heavily on nondeterminism, is dynamic verification. Dynamic verification integrates the best features of testing and model checking. In the area of MP program verification, however, there have been only a handful of dynamic verifiers. These dynamic verifiers, despite their strengths, suffer from the explosion in execution scenarios. All existing dynamic verifiers, to our knowledge, exhaustively explore the nondeterministic choices in an MP program. It is apparent that an MP program with many nondeterministic constructs will quickly inundate such tools. This dissertation focuses on the problem of containing the exponential space of execution scenarios (or interleavings) while providing a soundness and completeness guarantee over safety properties of MP programs (specifically deadlocks). We present a predictive verification methodology and an associated framework, called MAAPED(Messaging Application Analysis with Predictive Error Discovery), that operates in polynomial time over MP programs to detect deadlocks among other safety property violations. In brief, we collect a single execution trace of an MP program and without re-running other execution schedules, reliably construct the artifacts necessary to predict any mishappening in an unexplored execution schedule with the aforementioned formal guarantee. The main contributions of the thesis are the following: The Functionally Irrelevant Barrier Algorithm to increase program productivity and ease in verification complexity. A sound pragmatic strategy to reduce the interleaving space of existing dynamic verifiers which is complete only for a certain class of MPI programs. A generalized matches-before ordering for MP programs. A predictive polynomial time verification framework as an alternate solution in the dynamic MP verification landscape. A soundness and completeness proof for the predictive framework's deadlock detection strategy for many formally characterized classes of MP programs. In the process of developing solutions that are mentioned above, we also collected important experiences relating to the development of dynamic verification schedulers. We present those experiences as a minor contribution of this thesis

    Doctor of Philosophy

    Get PDF
    dissertationAlmost all high performance computing applications are written in MPI, which will continue to be the case for at least the next several years. Given the huge and growing importance of MPI, and the size and sophistication of MPI codes, scalable and incisive MPI debugging tools are essential. Existing MPI debugging tools have, despite their strengths, many glaring de ficiencies, especially when it comes to debugging under the presence of nondeterminism related bugs, which are bugs that do not always show up during testing. These bugs usually become manifest when the systems are ported to di fferent platforms for production runs. This dissertation focuses on the problem of developing scalable dynamic verifi cation tools for MPI programs that can provide a coverage guarantee over the space of MPI nondeterminism. That is, the tools should be able to detect diff erent outcomes of nondeterministic events in an MPI program and enforce all those di fferent outcomes through repeated executions of the program with the same test harness. We propose to achieve the coverage guarantee by introducing efficient distributed causality tracking protocols that are based on the matches-before order. The matches-before order is introduced to address the shortcomings of the Lamport happens-before order [40], which is not sufficient to capture causality for MPI program executions due to the complexity of the MPI semantics. The two protocols we propose are the Lazy Lamport Clocks Protocol (LLCP) and the Lazy Vector Clocks Protocol (LVCP). LLCP provides good scalability with a small possibility of missing potential outcomes of nondeterministic events while LVCP provides full coverage guarantee with a scalability tradeoff . In practice, we show through our experiments that LLCP provides the same coverage as LVCP. This thesis makes the following contributions: •The MPI matches-before order that captures the causality between MPI events in an MPI execution. • Two distributed causality tracking protocols for MPI programs that rely on the matches-before order. • A Distributed Analyzer for MPI programs (DAMPI), which implements the two aforementioned protocols to provide scalable and modular dynamic verifi cation for MPI programs. • Scalability enhancement through algorithmic improvements for ISP, a dynamic verifi er for MPI programs

    MPSoC Zoom Debugging: A Deterministic Record-Partial Replay Approach

    Get PDF
    Accepté à EUC'2014International audienceThis work presents a debugging methodology for MPSoC based on deterministic record-replay. We propose a general model of MPSoC and define a debugging cycle targeting errors by applying temporal and spatial selection criteria. The idea behind spatial and temporal selection is to consider not the entire execution of the whole application but replay a part of the application during a specific execution interval. The proposed mechanisms are connected to GDB and allow for a visual representation of the considered part of the trace. The approach is validated on two execution platforms and two multimedia applications

    Dynamic Analysis of Embedded Software

    Get PDF
    abstract: Most embedded applications are constructed with multiple threads to handle concurrent events. For optimization and debugging of the programs, dynamic program analysis is widely used to collect execution information while the program is running. Unfortunately, the non-deterministic behavior of multithreaded embedded software makes the dynamic analysis difficult. In addition, instrumentation overhead for gathering execution information may change the execution of a program, and lead to distorted analysis results, i.e., probe effect. This thesis presents a framework that tackles the non-determinism and probe effect incurred in dynamic analysis of embedded software. The thesis largely consists of three parts. First of all, we discusses a deterministic replay framework to provide reproducible execution. Once a program execution is recorded, software instrumentation can be safely applied during replay without probe effect. Second, a discussion of probe effect is presented and a simulation-based analysis is proposed to detect execution changes of a program caused by instrumentation overhead. The simulation-based analysis examines if the recording instrumentation changes the original program execution. Lastly, the thesis discusses data race detection algorithms that help to remove data races for correctness of the replay and the simulation-based analysis. The focus is to make the detection efficient for C/C++ programs, and to increase scalability of the detection on multi-core machines.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore