18,958 research outputs found

    Computing parametrized solutions for plasmonic nanogap structures

    Full text link
    The interaction of electromagnetic waves with metallic nanostructures generates resonant oscillations of the conduction-band electrons at the metal surface. These resonances can lead to large enhancements of the incident field and to the confinement of light to small regions, typically several orders of magnitude smaller than the incident wavelength. The accurate prediction of these resonances entails several challenges. Small geometric variations in the plasmonic structure may lead to large variations in the electromagnetic field responses. Furthermore, the material parameters that characterize the optical behavior of metals at the nanoscale need to be determined experimentally and are consequently subject to measurement errors. It then becomes essential that any predictive tool for the simulation and design of plasmonic structures accounts for fabrication tolerances and measurement uncertainties. In this paper, we develop a reduced order modeling framework that is capable of real-time accurate electromagnetic responses of plasmonic nanogap structures for a wide range of geometry and material parameters. The main ingredients of the proposed method are: (i) the hybridizable discontinuous Galerkin method to numerically solve the equations governing electromagnetic wave propagation in dielectric and metallic media, (ii) a reference domain formulation of the time-harmonic Maxwell's equations to account for geometry variations; and (iii) proper orthogonal decomposition and empirical interpolation techniques to construct an efficient reduced model. To demonstrate effectiveness of the models developed, we analyze geometry sensitivities and explore optimal designs of a 3D periodic annular nanogap structure.Comment: 28 pages, 9 figures, 4 tables, 2 appendice

    A robust error estimator and a residual-free error indicator for reduced basis methods

    Full text link
    The Reduced Basis Method (RBM) is a rigorous model reduction approach for solving parametrized partial differential equations. It identifies a low-dimensional subspace for approximation of the parametric solution manifold that is embedded in high-dimensional space. A reduced order model is subsequently constructed in this subspace. RBM relies on residual-based error indicators or {\em a posteriori} error bounds to guide construction of the reduced solution subspace, to serve as a stopping criteria, and to certify the resulting surrogate solutions. Unfortunately, it is well-known that the standard algorithm for residual norm computation suffers from premature stagnation at the level of the square root of machine precision. In this paper, we develop two alternatives to the standard offline phase of reduced basis algorithms. First, we design a robust strategy for computation of residual error indicators that allows RBM algorithms to enrich the solution subspace with accuracy beyond root machine precision. Secondly, we propose a new error indicator based on the Lebesgue function in interpolation theory. This error indicator does not require computation of residual norms, and instead only requires the ability to compute the RBM solution. This residual-free indicator is rigorous in that it bounds the error committed by the RBM approximation, but up to an uncomputable multiplicative constant. Because of this, the residual-free indicator is effective in choosing snapshots during the offline RBM phase, but cannot currently be used to certify error that the approximation commits. However, it circumvents the need for \textit{a posteriori} analysis of numerical methods, and therefore can be effective on problems where such a rigorous estimate is hard to derive

    On the degree of the polynomial defining a planar algebraic curves of constant width

    Full text link
    In this paper, we consider a family of closed planar algebraic curves C\mathcal{C} which are given in parametrization form via a trigonometric polynomial pp. When C\mathcal{C} is the boundary of a compact convex set, the polynomial pp represents the support function of this set. Our aim is to examine properties of the degree of the defining polynomial of this family of curves in terms of the degree of pp. Thanks to the theory of elimination, we compute the total degree and the partial degrees of this polynomial, and we solve in addition a question raised by Rabinowitz in \cite{Rabi} on the lowest degree polynomial whose graph is a non-circular curve of constant width. Computations of partial degrees of the defining polynomial of algebraic surfaces of constant width are also provided in the same way.Comment: 13 page
    • …
    corecore