18 research outputs found

    Practical semantics for the Internet of Things: Physical states, device mashups, and open questions

    Full text link
    Abstract—The Internet of Things (IoT) envisions cross-domain applications that combine digital services with services provided by resource-constrained embedded devices that connect to the physical world. Such smart environments can comprise a large number of devices from various different vendors. This requires a high degree of decoupling and neither devices nor user agents can rely on a priori knowledge of service APIs. Semantic service descriptions are applicable to heterogeneous application domains due to their high level of abstraction and can enable auto-matic service composition. This paper shows how the RESTdesc description format and semantic reasoning can be applied to create Web-like mashups in smart environments. Our approach supports highly dynamic environments with resource-constrained IoT devices where services can become unavailable due to device mobility, limited energy, or network disruptions. The concepts are backed by a concrete system architecture whose implementation is publicly available. It is used to evaluate the semantics-based approach in a realistic IoT-related scenario. The results show that current reasoners are able to produce medium-sized IoT mashups, but struggle with state space explosion when physical states become part of the proofing process. I

    Authenticating wireless nodes in building automation : challenges and approaches

    Get PDF
    Modern wireless nodes in building automation systems interconnect natively through the Internet Protocol (IP). As a result, the emerging coalescence of existing IT networks with networks on the field level presents many challenges. Specifically, mutual authentication of devices in an IT environment is one of the main issues. Moreover, this mutual authentication has to take place with embedded devices in the field that feature manifold constraints and require a simple but secure provisioning. The Fairhair Alliance is in the process of standardizing an autonomic secure bootstrapping process to tackle these challenges. The paper outlines this automated approach and shows the successful implementation of a real-life prototype. This demonstrates that the required cryptographic functions and procedures are feasible on a constrained low power device

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    IETF standardization in the field of the internet of things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 258885 (SPITFIRE project), from the iMinds ICON projects GreenWeCan and O’CareCloudS, a FWO postdoc grant for Eli De Poorter and a VLIR PhD scholarship to Isam Ishaq

    Discovery and Mash-up of Physical Resources through a Web of Things Architecture

    Get PDF
    The Internet of Things has focused on new systems, the so-called smart things, to integrate the physical world with the virtual world by exploiting the network architecture of the Internet. However, defining applications on top of smart things is mainly reserved to system experts, since it requires a thorough knowledge of hardware platforms and some specific programming languages. Furthermore, a common infrastructure to publish and share resource information is also needed. In this paper, we propose a software architecture that simplifies the visual development and execution of mash-up applications based on smart things, exploiting Internet Web protocols and their ubiquitous availability even on constrained devices. We have developed a distributed architecture that allows to create and control mash-up applications in an easy and scalable way, without specific knowledge on both hardware and programming languages. In addition, we have also defined a centralized public database deployed on the Internet, to manage and share physical resource information. The effectiveness of the proposed framework has been tested through a real use case and experimental results have demonstrated the validity of the whole system

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF

    Communications with QoS in IoT&Cloud environment

    Get PDF
    Dissertação de mestrado integrado em Engenharia de Telecomunicações e InformáticaWith advances in communication technology the future internet presents numerous opportunities to develop new systems designed to make day to day life easier and to enhance and prolong the life of people with disabilities. Internet of Things (IoT) objectives are; enabling a more extensive interconnection of devices; delivering information perception; enabling development of more comprehensive intelligent services. Is this motivation that propels the development of new services that integrate the mobility of cloud systems and the diversity of IoT. It will enable us to create new and more independent care systems for people with special needs, providing them a certain degree of independence from others, such are caregivers or their families. This can have a psychological and social impact due to the better quality of life that enables. Other motivation is, the versatility and mobility of services it can provide to everyone by making those services available anywhere through the internet. In this thesis is explored and explained the different kinds of technologies that can be integrated in order to enable the creation of the future Internet platforms based on IoT and Cloud Computing. Relevant technologies for this thematic such as Next Generation Networks (NGNs), Body Sensor Networks (BSNs), cloud computing, IoT and IP multimedia Subsystem (IMS), are explained. Several Quality of Service (QoS) experiments were conducted in IoT&Cloud platform. The obtained results were analyzed and the main findings were used to recommend the main requirements for a platform that underlies in IoT and Cloud technologies. Furthermore, a system architecture fulfilling the requirements pointed out as demanded is proposed and its functionalities are exemplified in a specific scenario. The proposed system is then implemented and tested in order to ascertain the feasibility of the implementation and the performance of communications. The thesis ends with the conclusion on the findings and future work that still needs to be done.Com os avanços nas tecnologias de comunicação a Internet do Futuro apresenta numerosas oportunidades para desenvolver novos sistemas projetados para fazerem a vida do dia a dia mais fácil e para melhorar e prolongar a vida de pessoas com carências especiais. Os objectivos da Internet of Things(IoT) são; permitir uma interconexão mais extensa dos dispositivos; fornecer perceção da informação; permitir o desenvolvimento de serviços inteligentes mais compreensivos. E esta motivação que impulsiona o desenvolvimento de novos serviços que integram a mobilidade dos sistemas cloud e a diversidade da IoT. Isto vai nos permitir criar novos e mais sistemas de cuidados independentes para pessoas com carências especiais, permitindo-lhes um certo grau de independência de outros, tais como cuidadores ou as suas famílias. Isto pode ter um impacto psicológico e social devido a qualidade de vida que proporciona. Outra motivação é a versatilidade e mobilidade de serviços que pode fornecer a todos ao tornar esses disponíveis em qualquer lado através da internet. Nesta tese são explorados e explicados os diferentes tipos de tecnologias que podem ser integradas de forma a permitir a criação de plataformas de internet do futuro baseadas em IoT e Cloud Computing. São explicadas tecnologias relevantes para esta temática tais como Next Generation Networks(NGNs), Body Sensor Networks( BSNs), cloud computing, IoT e IP multimedia Subsystem(IMS). Foram conduzidas várias experiências em uma plataforma IoT&Cloud. Os resultados obtidos foram analisados e as conclusões usadas para recomendar os requerimentos principais de uma plataforma que tem como base as tecnologias IoT e Cloud. Além disso, é proposta uma arquitectura de sistema que preenche os requisitos enunciados e as suas funcionalidades exemplificadas em um cenário específico. O sistema proposto é depois implementado e testado de modo a determinar a viabilidade da implementação e o desempenho das comunicações. A tese acaba com a conclusão dos resultados obtidos e trabalho futuro que ainda necessita ser feito

    IoT-laitteiden emulaatio

    Get PDF
    Internet of Things (IoT) connects real life objects to the Internet. In this concept, devices, such as sensors and actuators, control the physical environment generating a large amount of data that can be used in applications and services. As they are typically constrained in memory and power, lightweight implementations are needed. Moreover, the number of Internet-connected devices is continually growing and thus, the technical solutions need to be scalable too. This introduces a problem; managing such a large amount of devices as well as testing the different IoT scenarios may be cumbersome with existing physical testbeds, which require a lot of configuring and lack scalability. This thesis proposes the design and implementation of emulated virtual devices using IoT specific protocols and data models, such as CoAP, LWM2M and IPSO objects. As device management is an important aspect of IoT, these devices are implemented to communicate with the management server through LWM2M interfaces in addition to communicating with each other. The emulated devices consist of virtual sensors and actuators represented as IPSO objects, which can be used to sense the simulated environment or control it with simple operations. Moreover, two use cases are defined and presented to create appropriate device logic. The virtualization of the devices is implemented by using Docker containers. They enable scaling to hundreds of devices, which is a key feature of the emulator. The design of the emualor follows CoAP and LWM2M specifications, which define the set of necessary functionalities and rules for the implementation. At the end of this thesis, the emulator is evaluated by comparing it to the initial design requirements along with scalability and bandwidth usage tests. Finally, future work for improving the emulator is presented.Internet-verkko on nopeasti laajentunut laitteisiin, jotka voivat mitata ja ohjata ympäristöään Internet-yhteyden välityksellä muodostaen Esineiden Internetin (eng. Internet of Things, IoT). Tällaisilla laitteilla, kuten sensoreilla, on yleensä rajallisesti muistia, tehoa ja kapasiteettia tiedonkäsittelyyn. Tästä syystä onkin tärkeää, että ne ovat tekniseltä toteutukseltaan mahdollisimman kevyitä. Lisäksi IoT-laitteiden määrä kasvaa jatkuvasti, mikä tarkoittaa sitä, että teknisten toteutusten on oltava myös skaalautuvia. Valtavan laitemäärän hallinta sekä erilaisten IoT-skenaarioiden testaaminen on kuitenkin hyvin vaivalloista fyysisessä testiympäristössä, erityisesti heikon skaalautuvuuden takia. Tämä diplomityö esittää ja toteuttaa ratkaisuksi emulaattorin, jolla voi emuloida useita virtuaalisia laitteita käyttäen IoT-protokollia ja datamalleja, kuten CoAP- ja LWM2M-protokollia sekä IPSO-objekteja. Koska laitehallinta on olennainen osa IoT-konseptia, virtuaaliset laitteet on toteutettu niin, että ne voivat paitsi kommunikoida keskenään, niitä voi myös hallita hallintapalvelimen kautta LWM2M-operaatioita käyttäen. Laitteet koostuvat virtuaalisista sensoreista ja kytkimistä, joita mallinnetaan IPSO-objekteilla. Niiden avulla dataa voidaan kerätä ja lähettää simuloidussa ympäristössä. Lisäksi, työssä esitellään kaksi testitapausta, joihin toteutettu laitelogiikka pohjautuu. Virtualisointi tapahtuu Docker-platformin avulla, joka mahdollistaa skaalaamisen satoihin laitteisiin. Emulaattorin toteutus pohjautuu CoAP- ja LWM2M-standardeihin, jotka määrittävät sallitut toiminnallisuudet ja operaatiot. Diplomityön lopussa emulaattori arvioidaan toteutuneiden suunnitteluvaatimusten sekä tehtyjen skaalautuvuustestien ja taajuuskaistan käyttöä tarkastelevien testien perusteella

    IntegraDos: facilitating the adoption of the Internet of Things through the integration of technologies

    Get PDF
    También, han sido analizados los componentes para una integración del IoT y cloud computing, concluyendo en la arquitectura Lambda-CoAP. Y por último, los desafíos para una integración del IoT y Blockchain han sido analizados junto con una evaluación de las posibilidades de los dispositivos del IoT para incorporar nodos de Blockchain. Las contribuciones de esta tesis doctoral contribuyen a acercar la adopción del IoT en la sociedad, y por tanto, a la expansión de esta prominente tecnología. Fecha de lectura de Tesis: 17 de diciembre 2018.El Internet de las Cosas (IoT) fue un nuevo concepto introducido por K. Asthon en 1999 para referirse a un conjunto identificable de objetos conectados a través de RFID. Actualmente, el IoT se caracteriza por ser una tecnología ubicua que está presente en un gran número de áreas, como puede ser la monitorización de infraestructuras críticas, sistemas de trazabilidad o sistemas asistidos para el cuidado de la salud. El IoT está cada vez más presente en nuestro día a día, cubriendo un gran abanico de posibilidades con el fin de optimizar los procesos y problemas a los que se enfrenta la sociedad. Es por ello por lo que el IoT es una tecnología prometedora que está continuamente evolucionando gracias a la continua investigación y el gran número de dispositivos, sistemas y componentes emergidos cada día. Sin embargo, los dispositivos involucrados en el IoT se corresponden normalmente con dispositivos embebidos con limitaciones de almacenamiento y procesamiento, así como restricciones de memoria y potencia. Además, el número de objetos o dispositivos conectados a Internet contiene grandes previsiones de crecimiento para los próximos años, con unas expectativas de 500 miles de millones de objetos conectados para 2030. Por lo tanto, para dar cabida a despliegues globales del IoT, además de suplir las limitaciones que existen, es necesario involucrar nuevos sistemas y paradigmas que faciliten la adopción de este campo. El principal objetivo de esta tesis doctoral, conocida como IntegraDos, es facilitar la adopción del IoT a través de la integración con una serie de tecnologías. Por un lado, ha sido abordado cómo puede ser facilitada la gestión de sensores y actuadores en dispositivos físicos sin tener que acceder y programar las placas de desarrollo. Por otro lado, un sistema para programar aplicaciones del IoT portables, adaptables, personalizadas y desacopladas de los dispositivos ha sido definido
    corecore