3,780 research outputs found

    Using Machine Learning for Handover Optimization in Vehicular Fog Computing

    Full text link
    Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set

    On Mixed-Initative Planning and Control for Autonomous Underwater Vehicles

    Get PDF
    Supervision and control of Autonomous underwater vehicles (AUVs) has traditionally been focused on an operator determining a priori the sequence of waypoints of a single vehicle for a mission. As AUVs become more ubiquitous as a scientific tool, we envision the need for controlling multiple vehicles which would impose less cognitive burden on the operator with a more abstract form of human-in-the-loop control. Such mixed-initiative methods in goal-oriented commanding are new for the oceanographic domain and we describe the motivations and preliminary experiments with multiple vehicles operating simultaneously in the water, using a shore-based automated planner

    Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction

    Full text link
    With the availability of vast amounts of user visitation history on location-based social networks (LBSN), the problem of Point-of-Interest (POI) prediction has been extensively studied. However, much of the research has been conducted solely on voluntary checkin datasets collected from social apps such as Foursquare or Yelp. While these data contain rich information about recreational activities (e.g., restaurants, nightlife, and entertainment), information about more prosaic aspects of people's lives is sparse. This not only limits our understanding of users' daily routines, but more importantly the modeling assumptions developed based on characteristics of recreation-based data may not be suitable for richer check-in data. In this work, we present an analysis of education "check-in" data using WiFi access logs collected at Purdue University. We propose a heterogeneous graph-based method to encode the correlations between users, POIs, and activities, and then jointly learn embeddings for the vertices. We evaluate our method compared to previous state-of-the-art POI prediction methods, and show that the assumptions made by previous methods significantly degrade performance on our data with dense(r) activity signals. We also show how our learned embeddings could be used to identify similar students (e.g., for friend suggestions).Comment: published in KDD'1

    Cross-Domain Image Retrieval with Attention Modeling

    Full text link
    With the proliferation of e-commerce websites and the ubiquitousness of smart phones, cross-domain image retrieval using images taken by smart phones as queries to search products on e-commerce websites is emerging as a popular application. One challenge of this task is to locate the attention of both the query and database images. In particular, database images, e.g. of fashion products, on e-commerce websites are typically displayed with other accessories, and the images taken by users contain noisy background and large variations in orientation and lighting. Consequently, their attention is difficult to locate. In this paper, we exploit the rich tag information available on the e-commerce websites to locate the attention of database images. For query images, we use each candidate image in the database as the context to locate the query attention. Novel deep convolutional neural network architectures, namely TagYNet and CtxYNet, are proposed to learn the attention weights and then extract effective representations of the images. Experimental results on public datasets confirm that our approaches have significant improvement over the existing methods in terms of the retrieval accuracy and efficiency.Comment: 8 pages with an extra reference pag

    An Agent-Based Simulation API for Speculative PDES Runtime Environments

    Get PDF
    Agent-Based Modeling and Simulation (ABMS) is an effective paradigm to model systems exhibiting complex interactions, also with the goal of studying the emergent behavior of these systems. While ABMS has been effectively used in many disciplines, many successful models are still run only sequentially. Relying on simple and easy-to-use languages such as NetLogo limits the possibility to benefit from more effective runtime paradigms, such as speculative Parallel Discrete Event Simulation (PDES). In this paper, we discuss a semantically-rich API allowing to implement Agent-Based Models in a simple and effective way. We also describe the critical points which should be taken into account to implement this API in a speculative PDES environment, to scale up simulations on distributed massively-parallel clusters. We present an experimental assessment showing how our proposal allows to implement complicated interactions with a reduced complexity, while delivering a non-negligible performance increase

    STEAM: A Platform for Scalable Spatiotemporal Analytics

    Get PDF
    Spatiotemporal datasets have become increasingly available with the introduction of a various set of applications and services trac- ing the behavior of moving objects. Recently, there has been a high demand in understanding these datasets using spatiotemporal analytics. While being considered of high value, spatiotemporal analytics did not yet see a wide spreading into the actual business workflow or the direct configuration of services and applications. The computational complexity for spatiotemporal datasets and the heterogeneity of data sources are considered key factors for the current state. This paper introduces STEAM, a platform for distributed spatiotemporal analytics on heterogeneous spatiotemporal datasets. STEAM introduces a framework that abstracts the key components from incoming spatiotemporal datasets that originate from various positioning systems. This abstraction provides a common base for distributed and scalable analytics methods that is not bound to a specific underlying positioning technique. STEAM provides a distributed state-of-the-art implementation and is evaluated on a multi-machine testbed for linear scalability.BMBF, 01IS12056, Software Campus (TU Berlin
    • …
    corecore