7,088 research outputs found

    Hybrid routing and bridging strategies for large scale mobile ad hoc networks

    Get PDF
    Multi-hop packet radio networks (or mobile ad-hoc networks) are an ideal technology to establish instant communication infrastructure for military and civilian applications in which both hosts and routers are mobile. In this dissertation, a position-based/link-state hybrid, proactive routing protocol (Position-guided Sliding-window Routing - PSR) that provides for a flat, mobile ad-hoc routing architecture is described, analyzed and evaluated. PSR is based on the superposition of link-state and position-based routing, and it employs a simplified way of localizing routing overhead, without having to resort to complex, multiple-tier routing organization schemes. A set of geographic routing zones is defined for each node, where the purpose of the ith routing zone is to restrict propagation of position updates, advertising position differentials equal to the radius of the (i-i )th routing zone. Thus, the proposed protocol controls position-update overhead generation and propagation by making the overhead generation rate and propagation distance directly proportional to the amount of change in a node\u27s geographic position. An analytical model and framework is provided, in order to study the various design issues and trade-offs of PSR routing mechanism, discuss their impact on the protocol\u27s operation and effectiveness, and identify optimal values for critical design parameters, under different mobility scenarios. In addition an in-depth performance evaluation, via modeling and simulation, was performed in order to demonstrate PSR\u27s operational effectiveness in terms of scalability, mobility support, and efficiency. Furthermore, power and energy metrics, such as path fading and battery capacity considerations, are integrated into the routing decision (cost function) in order to improve PSR\u27s power efficiency and network lifetime. It is demonstrated that the proposed routing protocol is ideal for deployment and implementation especially in large scale mobile ad hoc networks. Wireless local area networks (WLAN) are being deployed widely to support networking needs of both consumer and enterprise applications, and IEEE 802.11 specification is becoming the de facto standard for deploying WLAN. However IEEE 802.11 specifications allow only one hop communication between nodes. A layer-2 bridging solution is proposed in this dissertation, to increase the range of 802.11 base stations using ad hoc networking, and therefore solve the hotspot communication problem, where a large number of mobile users require Internet access through an access point. In the proposed framework nodes are divided into levels based on their distance (hops) from the access point. A layer-2 bridging tree is built based on the level concept, and a node in certain level only forwards packets to nodes in its neighboring level. The specific mechanisms for the forwarding tree establishment as well as for the data propagation are also introduced and discussed. An analytical model is also presented in order to analyze the saturation throughput of the proposed mechanism, while its applicability and effectiveness is evaluated via modeling and simulation. The corresponding numerical results demonstrate and confirm the significant area coverage extension that can be achieved by the solution, when compared with the conventional 802.1 lb scheme. Finally, for implementation purposes, a hierarchical network structure paradigm based on the combination of these two protocols and models is introduced

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    • …
    corecore