21,537 research outputs found

    PyCARL: A PyNN Interface for Hardware-Software Co-Simulation of Spiking Neural Network

    Full text link
    We present PyCARL, a PyNN-based common Python programming interface for hardware-software co-simulation of spiking neural network (SNN). Through PyCARL, we make the following two key contributions. First, we provide an interface of PyNN to CARLsim, a computationally-efficient, GPU-accelerated and biophysically-detailed SNN simulator. PyCARL facilitates joint development of machine learning models and code sharing between CARLsim and PyNN users, promoting an integrated and larger neuromorphic community. Second, we integrate cycle-accurate models of state-of-the-art neuromorphic hardware such as TrueNorth, Loihi, and DynapSE in PyCARL, to accurately model hardware latencies that delay spikes between communicating neurons and degrade performance. PyCARL allows users to analyze and optimize the performance difference between software-only simulation and hardware-software co-simulation of their machine learning models. We show that system designers can also use PyCARL to perform design-space exploration early in the product development stage, facilitating faster time-to-deployment of neuromorphic products. We evaluate the memory usage and simulation time of PyCARL using functionality tests, synthetic SNNs, and realistic applications. Our results demonstrate that for large SNNs, PyCARL does not lead to any significant overhead compared to CARLsim. We also use PyCARL to analyze these SNNs for a state-of-the-art neuromorphic hardware and demonstrate a significant performance deviation from software-only simulations. PyCARL allows to evaluate and minimize such differences early during model development.Comment: 10 pages, 25 figures. Accepted for publication at International Joint Conference on Neural Networks (IJCNN) 202

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Using global analysis, partial specifications, and an extensible assertion language for program validation and debugging

    Get PDF
    We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis

    Taming Numbers and Durations in the Model Checking Integrated Planning System

    Full text link
    The Model Checking Integrated Planning System (MIPS) is a temporal least commitment heuristic search planner based on a flexible object-oriented workbench architecture. Its design clearly separates explicit and symbolic directed exploration algorithms from the set of on-line and off-line computed estimates and associated data structures. MIPS has shown distinguished performance in the last two international planning competitions. In the last event the description language was extended from pure propositional planning to include numerical state variables, action durations, and plan quality objective functions. Plans were no longer sequences of actions but time-stamped schedules. As a participant of the fully automated track of the competition, MIPS has proven to be a general system; in each track and every benchmark domain it efficiently computed plans of remarkable quality. This article introduces and analyzes the most important algorithmic novelties that were necessary to tackle the new layers of expressiveness in the benchmark problems and to achieve a high level of performance. The extensions include critical path analysis of sequentially generated plans to generate corresponding optimal parallel plans. The linear time algorithm to compute the parallel plan bypasses known NP hardness results for partial ordering by scheduling plans with respect to the set of actions and the imposed precedence relations. The efficiency of this algorithm also allows us to improve the exploration guidance: for each encountered planning state the corresponding approximate sequential plan is scheduled. One major strength of MIPS is its static analysis phase that grounds and simplifies parameterized predicates, functions and operators, that infers knowledge to minimize the state description length, and that detects domain object symmetries. The latter aspect is analyzed in detail. MIPS has been developed to serve as a complete and optimal state space planner, with admissible estimates, exploration engines and branching cuts. In the competition version, however, certain performance compromises had to be made, including floating point arithmetic, weighted heuristic search exploration according to an inadmissible estimate and parameterized optimization

    Efficient Monitoring of ??-languages

    Get PDF
    We present a technique for generating efficient monitors for Omega-regular-languages. We show how Buchi automata can be reduced in size and transformed into special, statistically optimal nondeterministic finite state machines, called binary transition tree finite state machines (BTT-FSMs), which recognize precisely the minimal bad prefixes of the original omega-regular-language. The presented technique is implemented as part of a larger monitoring framework and is available for download
    corecore