222 research outputs found

    Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications

    Get PDF
    © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/JPROC.2010.205101

    Development of multi-material phantoms and implanted monopole antennas for bone fracture monitoring

    Get PDF
    This thesis presents a novel method for monitoring the healing of severe bone fractures. This would be particularly useful during the first two to four weeks after trauma where x-ray and computerised tomography scanning cannot provide an accurate indication regarding the healing status of the fractured bone. The technique involves measuring the radiofrequency transmission from one bone-implanted monopole to another, each one located on either side of the bone fracture. Throughout this thesis, it is envisaged that the monopoles will also act as the screws of an external fixation implanted into patients for the stabilization and alignment of the bone fragments. To replicate a simplified version of a human limb, several multi-material semi-solid phantoms were developed to represent bone marrow, bone cortical, blood and muscle. Medical literature indicates that the amount of blood found at the initial stage of a bone fracture decreases as bone regeneration takes place towards the healed state. The rate of change of the 21 of the implanted monopoles over time was shown to provide a tool that allowed the estimation of the amount of blood (hematoma) inside any bone fracture. In this thesis it has been shown that as the effective dielectric properties of the investigated fractured area shifted from the dielectric properties of blood towards the properties of bone, the 21 of the monopoles increased, thus, this technique can be used to indicate bone healing. The simulated results were validated in measurements using several multi-material phantoms and a real lamb joint. Finally, an analytical model on the approximation of the 21 of the monopoles in the near field inside the multi-material phantoms was developed. The results showed good agreement over the frequency spectrum of 1 to 4GHz and reasonable agreement over the parametric investigation of separation distance between them for the range of 1 to 7cm. This will potentially allow the application of the proposed technique for special types of fractures where the screws of the external fixation are separated by different distances

    Modelling and characterisation of antennas and propagation for body-centric wireless communication

    Get PDF
    PhDBody-Centric Wireless Communication (BCWC) is a central point in the development of fourth generation mobile communications. The continuous miniaturisation of sensors, in addition to the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to a new concept of usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body or even implanted. Body-centric wireless networks take their place within the personal area networks, body area networks and body sensor networks which are all emerging technologies that have a broad range of applications such as healthcare and personal entertainment. The major difference between BCWC and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from radio propagation perspective and it is therefore important to understand and characterise the effect of the human body on the antenna elements, the radio channel parameters and hence the system performance. This is presented and highlighted in the thesis through a combination of experimental and electromagnetic numerical investigations, with a particular emphasis to the numerical analysis based on the finite-difference time-domain technique. The presented research work encapsulates the characteristics of the narrowband (2.4 GHz) and ultra wide-band (3-10 GHz) on-body radio channels with respect to different digital phantoms, body postures, and antenna types hence highlighting the effect of subject-specific modelling, static and dynamic environments and antenna performance on the overall body-centric network. The investigations covered extend further to include in-body communications where the radio channel for telemetry with medical implants is also analysed by considering the effect of different digital phantoms on the radio channel characteristics. The study supports the significance of developing powerful and reliable numerical modelling to be used in conjunction with measurement campaigns for a comprehensive understanding of the radio channel in body-centric wireless communication. It also emphasises the importance of considering subject-specific electromagnetic modelling to provide a reliable prediction of the network performance

    Towards Accurate Dielectric Property Retrieval of Biological Tissues for Blood Glucose Monitoring

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10/1109/TMTT.2014.2365019

    Battery-less near field communications (nfc) sensors for internet of things (iot) applications

    Get PDF
    L’ implementació de la tecnologia de comunicació de camp proper (NFC) en els telèfons intel·ligents no para de créixer degut a l’ús d’aquesta per fer pagaments, això, junt amb el fet de poder aprofitar l’energia generada pel mòbil no només per la comunicació, sinó també per transmetre energia, el baix cost dels xips NFC, i el fet de que els telèfons tinguin connectivitat amb internet, possibilita i fa molt interesant el disseny d’etiquetes sense bateria incorporant-hi sensors i poder enviar la informació al núvol, dins del creixent escenari de l’internet de les coses (IoT). La present Tesi estudia la viabilitat d’aquests sensors, analitzant la màxima distància entre lector i sensor per proveir la potència necessària, presenta tècniques per augmentar el rang d’operació, i analitza els efectes de certs materials quan aquests estan propers a les antenes. Diversos sensors han estat dissenyats i analitzats i son presentats en aquest treball. Aquests son: Una etiqueta que mesura la humitat de la terra, la temperatura i la humitat relativa de l’aire per controlar les condicions de plantes. Un sensor per detectar la humitat en bolquers, imprès en material flexible que s’adapta a la forma del bolquer. Dues aplicacions, una per estimació de pH i una altre per avaluar el grau de maduració de fruites, basats en un sensor de color. I, per últim, s’estudia la viabilitat de sensors en implants per aplicacions mèdiques, analitzant l’efecte del cos i proposant un sistema per augmentar la profunditat a la que aquests es poden llegir utilitzant un telèfon mòbil. Tots aquests sensors poden ser alimentats i llegits per qualsevol dispositiu que disposin de connexió NFC.La implementación de la tecnología de comunicaciones de campo cercano (NFC) en los teléfonos inteligentes no para de crecer debido al uso de esta para llevar a cabo pagos, esto, junto con el hecho de poder aprovechar la energía generada por el móvil no sólo para la comunicación, sino también para transmitir energía, el bajo coste de los chips NFC, i el hecho que los teléfonos tengan conectividad a internet, posibilita y hace muy interesante el diseño de etiquetas sin batería que incorporen sensores i poder enviar la información a la nube, enmarcado en el creciente escenario del internet de las cosas (IoT). La presente Tesis estudia la viabilidad de estos sensores, analizando la máxima distancia entre lector i sensor para proveer la potencia necesaria, presenta técnicas para aumentar el rango de operación, y analiza los efectos de ciertos materiales cuando estos están cerca de las antenas. Varios sensores han sido diseñados y analizados y son presentados en este trabajo. Estos son: Una etiqueta que mide la humedad de la tierra, la temperatura y la humedad relativa del aire para controlar las condiciones de plantas. Un sensor para detectar la humedad en pañales, impreso en material flexible que se adapta a la forma del pañal. Dos aplicaciones, una para estimación de pH y otra para evaluar el grado de maduración de frutas, basados en un sensor de color. Y, por último, se estudia la viabilidad de sensores en implantes para aplicaciones médicas, analizando el efecto del cuerpo y proponiendo un sistema para aumentar la profundidad a la que estos se pueden leer usando un teléfono móvil. Todos estos sensores pueden ser alimentados y leídos por cualquier dispositivo que disponga de conexión NFC.The implementation of near field communication (NFC) technology into smartphones grows rapidly due the use of this technology as a payment system. This, altogether with the fact that the energy generated by the phone can be used not only to communicate but for power transfer as well, the low-cost of the NFC chips, and the fact that the smartphones have connectivity to internet, makes possible and very interesting the design of battery-less sensing tags which information can be sent to the cloud, within the growing internet of things (IoT) scenario. This Thesis studies the feasibility of these sensors, analysing the maximum distance between reader and sensor to provide the necessary power, presents techniques to increase the range of operation, and analyses the effects of certain materials when they are near to the antennas. Several sensors have been designed and analysed and are presented in this work. These are: a tag that measures the soil moisture, the temperature and the relative humidity of the air to control the conditions of plants. A moisture sensor for diapers, printed on flexible material that adapts to the diaper shape. Two applications, one for pH estimation and another for assessing the degree of fruit ripening, based on a colour sensor. And finally, the feasibility of sensors in implants for medical applications is studied, analysing the effect of the body and proposing a system to increase the depth at which they can be read using a mobile phone. All of these sensors can be powered and read by any NFC enabled device

    Study of Dual Band Wearable Antennas Using Commonly Worn Fabric Materials

    Get PDF
    In recent years, body-centric communication has become one of the most attractive fields of study. The versatile applications of body-centric communication not only being used for health monitoring, but also for real-time communication purposes in special occupations. They are important for supporting a population with increasing life expectancy and increase the probability of survival for the people suffering from chronic illness. For both wearable and implantable form of body-centric communication, characterizing the system electromagnetically is very important. Given the constraints in power, size, weight and conformity, one of the most challenging parts become the designing antenna for such communication systems. Wearable antennas are the most popular option regarding these issues. Wearable antennas are easier and simpler to mount on clothing when they are made of textile materials. In the process of designing a textile antenna, the availability of the fabrics is pivotal to mount on regularly worn clothes. In this report, several designs of a co-planar waveguide microstrip patch antenna are presented. Instead of felt fabric, the antenna was modified using 100% polyester and cotton fabric for the substrate material. A parasitic patch slot was created on the co-planar ground plane to achieve the dual band resonance frequencies at 2.4 GHz and 5.15 GHz. The geometrical modifications of the antennas were described and their performances were analyzed. The antenna achieved resonating frequency with a thinner substrate as the dielectric constant went higher for the fabrics. The design with different fabric materials was first simulated in CST Microwave Studio, then fabricated and measured in a regular environment. They were also mounted on a 3-D printed human body model to analyze the bending effect. The design of the antennas shows satisfactory performance with a good -10dB bandwidth for both the lower and higher desired resonating frequency bandElectrical Engineerin

    Microwave Devices for Wearable Sensors and IoT

    Get PDF
    The Internet of Things (IoT) paradigm is currently highly demanded in multiple scenarios and in particular plays an important role in solving medical-related challenges. RF and microwave technologies, coupled with wireless energy transfer, are interesting candidates because of their inherent contactless spectrometric capabilities and for the wireless transmission of sensing data. This article reviews some recent achievements in the field of wearable sensors, highlighting the benefits that these solutions introduce in operative contexts, such as indoor localization and microwave sensing. Wireless power transfer is an essential requirement to be fulfilled to allow these sensors to be not only wearable but also compact and lightweight while avoiding bulky batteries. Flexible materials and 3D printing polymers, as well as daily garments, are widely exploited within the presented solutions, allowing comfort and wearability without renouncing the robustness and reliability of the built-in wearable sensor

    Electronic contact lens: a platform for wireless health monitoring applications

    Get PDF
    Electronic contact lenses can be used for non‐invasively monitoring vital human signs and medical parameters. However, maintaining a secure communications connection and a self‐sustainable power source are still looming challenges. This paper demonstrates a proof of concept electronic contact lens that includes a spiral antenna with its wireless circuit unit for data telemetry, a rectifier circuit for power conditioning and a micro light emitting diode (µLED) as a load. The spiral antenna with its rectifying circuit was designed considering operation in the Industrial, Scientific and Medical (ISM) band of 2.4 GHz. The spiral coil with an inner diameter of 10 mm, an outer diameter of 12 mm and a wire width of 0.2 mm was fabricated on a donut‐shaped flexible polyimide substarte. For biocompatibility purposes, Polyimide was used as the contact lens substrate and polydimethylsiloxane (PDMS) was used for encapsulation. A 3D‐printed eye model was developed for accurately shaping the curvature of the PDMS‐encapsulated contact lens. The reflection coefficient (S11) of the fabricated antenna was tested in different conditions and on an eye model to mimic the liquid condition of the human eye. In a wide range of conditions, a minimum of ‐20 dB reflection coefficient (S11) was obtained. The maximum antenna gain was ‐28 dBi and the contact lens satisfied the electromagnetic exposure safety limit of 1.6 W/kg for 1 g of tissue mass. We also determined the wavelength dependence of the electronic contact lens on different lens thicknesses. Our results showed that the lens is transmissive in the visible part of the spectrum

    Design and SAR Analysis of AMC-Based Fabric Antenna for Body-Centric Communication

    Get PDF
    This study focused on the design and analysis of an artificial magnetic conductor (AMC)-based fabric antenna for body-centric communication. The antenna was made of felt and had a loss tangent of 0.044 and relative permittivity of 1.3. The proposed antenna was built to function in the frequency band centered at 2.45 GHz, widely used in wireless communication devices. The antenna’s performance was evaluated using the electromagnetic simulation software CST MWS. A 50 Ω SubMiniature version connector was used to excite the proposed antenna. A 2×2 AMC array was integrated into the antenna below it to improve its performance in terms of radiation efficiency, gain, and backward radiation reduction. The antenna and AMC array were fabricated on flexible fabric substrates. The total volume of the AMC-integrated antenna is 0.55λo×0.55λo×0.016λo . It was demonstrated that adding an AMC array enhanced the radiation properties of the antenna and significantly decreased its back lobes. The on- and off-body maximum gains of the AMC-integrated antenna are (≥ 4.11 dBi) and 5.23 dBi, respectively. Furthermore, employing the AMC array, a significant reduction in the specific absorption rate value, which is (≤ 0.43 W/kg) for human body tissue chest/back and (≤ 0.75 W/kg) for human body tissue arm, was obtained, ensuring safety for human use. The simulated and measured results were in agreement. The tested on- and off-body radiation efficiencies in the frequency band centered at 2.45 GHz is (>67%) and (>83%), respectively. The proposed antenna can potentially be used in various applications such as healthcare monitoring, wearable electronics, and Internet of Things (IoT) systems, where reliable and efficient communication is required in a body-centric environment

    Implanted Antennas for Biomedical Applications

    Get PDF
    Body-Centric Wireless Communication (BCWC) is a central topic in the development of healthcare and biomedical technologies. Increasing healthcare quality, in addition to the continuous miniaturisation of sensors and the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, has led to a new era of biomedical devices and increases possibility of continuous monitoring, diagnostic and/or treatment of many diseases. However, the major difference between BCWC, particularly implantable devices, and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from a radio propagation perspective. This environment is a highly lossy and has a high effect on the antenna elements, the radio channel parameters and, hence a dramatic drop in the implanted antenna performance. This thesis focuses on how to improve the gain of implanted antennas. In order to improve the gain and performance of implanted antennas, this thesis uses a combination of experimental and electromagnetic numerical investigations. Extensive simulation and experimental investigations are carried out to study the effects of various external elements on the performance improvement of implanted antennas. The thesis also shows the design, characterisation, simulation and measurements of four different antennas to work at ISM band and seventeen different scenarios for body wireless communication. A 3- layer (skin, fat and muscle) and a liquid homogenise phantom were used for human body modelling in both simulation and measurements. The results shows that a length of printed line and a grid can be used on top of the human skin in order enhance the performance of the implanted antennas. Moreover, a ring and a hemispherical lens can be used externally in order to enhance the performance of the implanted antenna. This approach yields a significant improvement in the antenna gain and reduces the specific absorption rate (SAR) in most cases and the obtained gain varies between 2 dB and 8 dB
    corecore