22,001 research outputs found

    Recovering purity with comonads and capabilities

    Get PDF
    © 2020 Owner/Author. In this paper, we take a pervasively effectful (in the style of ML) typed lambda calculus, and show how to extend it to permit capturing pure expressions with types. Our key observation is that, just as the pure simply-typed lambda calculus can be extended to support effects with a monadic type discipline, an impure typed lambda calculus can be extended to support purity with a comonadic type discipline. We establish the correctness of our type system via a simple denotational model, which we call the capability space model. Our model formalises the intuition common to systems programmers that the ability to perform effects should be controlled via access to a permission or capability, and that a program is capability-safe if it performs no effects that it does not have a runtime capability for. We then identify the axiomatic categorical structure that the capability space model validates, and use these axioms to give a categorical semantics for our comonadic type system. We then give an equational theory (substitution and the call-by-value ß and • laws) for the imperative lambda calculus, and show its soundness relative to this semantics. Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic imperative calculus, and show that any two terms which are ß•-equal in the STLC are equal in the equational theory of the comonadic calculus, establishing that pure programs can be mapped in an equation-preserving way into our imperative calculus

    Recovering purity with comonads and capabilities

    Get PDF
    © 2020 Owner/Author. In this paper, we take a pervasively effectful (in the style of ML) typed lambda calculus, and show how to extend it to permit capturing pure expressions with types. Our key observation is that, just as the pure simply-typed lambda calculus can be extended to support effects with a monadic type discipline, an impure typed lambda calculus can be extended to support purity with a comonadic type discipline. We establish the correctness of our type system via a simple denotational model, which we call the capability space model. Our model formalises the intuition common to systems programmers that the ability to perform effects should be controlled via access to a permission or capability, and that a program is capability-safe if it performs no effects that it does not have a runtime capability for. We then identify the axiomatic categorical structure that the capability space model validates, and use these axioms to give a categorical semantics for our comonadic type system. We then give an equational theory (substitution and the call-by-value ß and • laws) for the imperative lambda calculus, and show its soundness relative to this semantics. Finally, we give a translation of the pure simply-typed lambda calculus into our comonadic imperative calculus, and show that any two terms which are ß•-equal in the STLC are equal in the equational theory of the comonadic calculus, establishing that pure programs can be mapped in an equation-preserving way into our imperative calculus

    A Syntactic Model of Mutation and Aliasing

    Full text link
    Traditionally, semantic models of imperative languages use an auxiliary structure which mimics memory. In this way, ownership and other encapsulation properties need to be reconstructed from the graph structure of such global memory. We present an alternative "syntactic" model where memory is encoded as part of the program rather than as a separate resource. This means that execution can be modelled by just rewriting source code terms, as in semantic models for functional programs. Formally, this is achieved by the block construct, introducing local variable declarations, which play the role of memory when their initializing expressions have been evaluated. In this way, we obtain a language semantics which directly represents at the syntactic level constraints on aliasing, allowing simpler reasoning about related properties. To illustrate this advantage, we consider the issue, widely studied in the literature, of characterizing an isolated portion of memory, which cannot be reached through external references. In the syntactic model, closed block values, called "capsules", provide a simple representation of isolated portions of memory, and capsules can be safely moved to another location in the memory, without introducing sharing, by means of "affine' variables. We prove that the syntactic model can be encoded in the conventional one, hence efficiently implemented.Comment: In Proceedings DCM 2018 and ITRS 2018 , arXiv:1904.0956

    No value restriction is needed for algebraic effects and handlers

    Full text link
    We present a straightforward, sound Hindley-Milner polymorphic type system for algebraic effects and handlers in a call-by-value calculus, which allows type variable generalisation of arbitrary computations, not just values. This result is surprising. On the one hand, the soundness of unrestricted call-by-value Hindley-Milner polymorphism is known to fail in the presence of computational effects such as reference cells and continuations. On the other hand, many programming examples can be recast to use effect handlers instead of these effects. Analysing the expressive power of effect handlers with respect to state effects, we claim handlers cannot express reference cells, and show they can simulate dynamically scoped state

    How to combine diagrammatic logics

    Full text link
    This paper is a submission to the contest: How to combine logics? at the World Congress and School on Universal Logic III, 2010. We claim that combining "things", whatever these things are, is made easier if these things can be seen as the objects of a category. We define the category of diagrammatic logics, so that categorical constructions can be used for combining diagrammatic logics. As an example, a combination of logics using an opfibration is presented, in order to study computational side-effects due to the evolution of the state during the execution of an imperative program
    • …
    corecore