725 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Intelligent network intrusion detection using an evolutionary computation approach

    Get PDF
    With the enormous growth of users\u27 reliance on the Internet, the need for secure and reliable computer networks also increases. Availability of effective automatic tools for carrying out different types of network attacks raises the need for effective intrusion detection systems. Generally, a comprehensive defence mechanism consists of three phases, namely, preparation, detection and reaction. In the preparation phase, network administrators aim to find and fix security vulnerabilities (e.g., insecure protocol and vulnerable computer systems or firewalls), that can be exploited to launch attacks. Although the preparation phase increases the level of security in a network, this will never completely remove the threat of network attacks. A good security mechanism requires an Intrusion Detection System (IDS) in order to monitor security breaches when the prevention schemes in the preparation phase are bypassed. To be able to react to network attacks as fast as possible, an automatic detection system is of paramount importance. The later an attack is detected, the less time network administrators have to update their signatures and reconfigure their detection and remediation systems. An IDS is a tool for monitoring the system with the aim of detecting and alerting intrusive activities in networks. These tools are classified into two major categories of signature-based and anomaly-based. A signature-based IDS stores the signature of known attacks in a database and discovers occurrences of attacks by monitoring and comparing each communication in the network against the database of signatures. On the other hand, mechanisms that deploy anomaly detection have a model of normal behaviour of system and any significant deviation from this model is reported as anomaly. This thesis aims at addressing the major issues in the process of developing signature based IDSs. These are: i) their dependency on experts to create signatures, ii) the complexity of their models, iii) the inflexibility of their models, and iv) their inability to adapt to the changes in the real environment and detect new attacks. To meet the requirements of a good IDS, computational intelligence methods have attracted considerable interest from the research community. This thesis explores a solution to automatically generate compact rulesets for network intrusion detection utilising evolutionary computation techniques. The proposed framework is called ESR-NID (Evolving Statistical Rulesets for Network Intrusion Detection). Using an interval-based structure, this method can be deployed for any continuous-valued input data. Therefore, by choosing appropriate statistical measures (i.e. continuous-valued features) of network trafc as the input to ESRNID, it can effectively detect varied types of attacks since it is not dependent on the signatures of network packets. In ESR-NID, several innovations in the genetic algorithm were developed to keep the ruleset small. A two-stage evaluation component in the evolutionary process takes the cooperation of rules into consideration and results into very compact, easily understood rulesets. The effectiveness of this approach is evaluated against several sources of data for both detection of normal and abnormal behaviour. The results are found to be comparable to those achieved using other machine learning methods from both categories of GA-based and non-GA-based methods. One of the significant advantages of ESR-NIS is that it can be tailored to specific problem domains and the characteristics of the dataset by the use of different fitness and performance functions. This makes the system a more flexible model compared to other learning techniques. Additionally, an IDS must adapt itself to the changing environment with the least amount of configurations. ESR-NID uses an incremental learning approach as new flow of traffic become available. The incremental learning approach benefits from less required storage because it only keeps the generated rules in its database. This is in contrast to the infinitely growing size of repository of raw training data required for traditional learning

    Decision support continuum paradigm for cardiovascular disease: Towards personalized predictive models

    Get PDF
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.Open Acces

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated
    corecore