1,920 research outputs found

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    6G Mobile-Edge Empowered Metaverse: Requirements, Technologies, Challenges and Research Directions

    Full text link
    The Metaverse has emerged as the successor of the conventional mobile internet to change people's lifestyles. It has strict visual and physical requirements to ensure an immersive experience (i.e., high visual quality, low motion-to-photon latency, and real-time tactile and control experience). However, the current communication systems fall short to satisfy these requirements. Mobile edge computing (MEC) has been indispensable to enable low latency and powerful computing. Moreover, the sixth generation (6G) networks promise to provide end users with high-capacity communications to MEC servers. In this paper, we bring together the primary components into a 6G mobile-edge framework to empower the Metaverse. This includes the usage of heterogeneous radios, intelligent reflecting surfaces (IRS), non-orthogonal multiple access (NOMA), and digital twins (DTs). We also discuss novel communication paradigms (i.e., semantic communication, holographic-type communication, and haptic communication) to further satisfy the demand for human-type communications and fulfil user preferences and immersive experiences in the Metaverse

    Virtual Factory:a systemic approach to building smart factories

    Get PDF

    Using mixed-reality to develop smart environments

    Get PDF
    Smart homes, smart cars, smart classrooms are now a reality as the world becomes increasingly interconnected by ubiquitous computing technology. The next step is to interconnect such environments, however there are a number of significant barriers to advancing research in this area, most notably the lack of available environments, standards and tools etc. A possible solution is the use of simulated spaces, nevertheless as realistic as strive to make them, they are, at best, only approximations to the real spaces, with important differences such as utilising idealised rather than noisy sensor data. In this respect, an improvement to simulation is emulation, which uses specially adapted physical components to imitate real systems and environments. In this paper we present our work-in-progress towards the creation of a development tool for intelligent environments based on the interconnection of simulated, emulated and real intelligent spaces using a distributed model of mixed reality. To do so, we propose the use of physical/virtual components (xReality objects) able to be combined through a 3D graphical user interface, sharing real-time information. We present three scenarios of interconnected real and emulated spaces, used for education, achieving integration between real and virtual worlds

    Information Technology and Human Factors to Enhance Design and Constructability Review Processes in Construction

    Get PDF
    abstract: Emerging information and communication technology (ICT) has had an enormous effect on the building architecture, engineering, construction and operation (AECO) fields in recent decades. The effects have resonated in several disciplines, such as project information flow, design representation and communication, and Building Information Modeling (BIM) approaches. However, these effects can potentially impact communication and coordination of the virtual design contents in both design and construction phases. Therefore, and with the great potential for emerging technologies in construction projects, it is essential to understand how these technologies influence virtual design information within the organizations as well as individuals’ behaviors. This research focusses on understanding current emerging technologies and its impacts on projects virtual design information and communication among projects stakeholders within the AECO organizations.Dissertation/ThesisDoctoral Dissertation Civil and Environmental Engineering 201

    Furthering Service 4.0: Harnessing Intelligent Immersive Environments and Systems

    Get PDF
    With the increasing complexity of service operations in different industries and more advanced uses of specialized equipment and procedures, the great current challenge for companies is to increase employees' expertise and their ability to maintain and improve service quality. In this regard, Service 4.0 aims to support and promote innovation in service operations using emergent technology. Current technological innovations present a significant opportunity to provide on-site, real-time support for field service professionals in many areas

    3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities

    Get PDF
    Moving from a set of independent virtual worlds to an integrated network of 3D virtual worlds or Metaverse rests on progress in four areas: immersive realism, ubiquity of access and identity, interoperability, and scalability. For each area, the current status and needed developments in order to achieve a functional Metaverse are described. Factors that support the formation of a viable Metaverse, such as institutional and popular interest and ongoing improvements in hardware performance, and factors that constrain the achievement of this goal, including limits in computational methods and unrealized collaboration among virtual world stakeholders and developers, are also considered
    • …
    corecore