663 research outputs found

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    Automated performance attack discovery in distributed system implementations

    Get PDF
    Security and performance are critical goals for distributed systems. The increased complexity in design, incomplete expertise of developers, and limited functionality of existing testing tools often result in implementations with vulnerabilities and make the debugging process difficult and costly. The deployed vulnerabilities are often exploited by adversaries preventing the system from achieving its design goals. We refer to attacks that slow down the performance of a system as performance attacks. In the past, finding performance attacks has been a painstaking manual process that involved an expert of the target implementation. Given the cost associated with each vulnerability that occurs in the production, there is a need for tools to automatically check that the implementation of a protocol achieves its performance goals with respect to malicious components in the system. In this dissertation, we find performance attacks automatically from implementations of distributed systems. We do not try to show that an implementation is free from all attacks. Our goal is to find attacks and report them to the user in a timely manner. We first investigate how to find attacks automatically from implementations under a simulated environment. A simulated approach, however, has a fundamental limitation in terms of applicable target systems, as certain assumptions are made about languages, operating systems or libraries used. Therefore, we next investigate challenges and requirements to automatically find attacks in implementations of distributed systems under an emulated environment where no limiting assumptions are made

    Principled Flow Tracking in IoT and Low-Level Applications

    Get PDF
    Significant fractions of our lives are spent digitally, connected to and dependent on Internet-based applications, be it through the Web, mobile, or IoT. All such applications have access to and are entrusted with private user data, such as location, photos, browsing habits, private feed from social networks, or bank details.In this thesis, we focus on IoT and Web(Assembly) apps. We demonstrate IoT apps to be vulnerable to attacks by malicious app makers who are able to bypass the sandboxing mechanisms enforced by the platform to stealthy exfiltrate user data. We further give examples of carefully crafted WebAssembly code abusing the semantics to leak user data.We are interested in applying language-based technologies to ensure application security due to the formal guarantees they provide. Such technologies analyze the underlying program and track how the information flows in an application, with the goal of either statically proving its security, or preventing insecurities from happening at runtime. As such, for protecting against the attacks on IoT apps, we develop both static and dynamic methods, while for securing WebAssembly apps we describe a hybrid approach, combining both.While language-based technologies provide strong security guarantees, they are still to see a widespread adoption outside the academic community where they emerged.In this direction, we outline six design principles to assist the developer in choosing the right security characterization and enforcement mechanism for their system.We further investigate the relative expressiveness of two static enforcement mechanisms which pursue fine- and coarse-grained approaches for tracking the flow of sensitive information in a system.\ua0Finally, we provide the developer with an automatic method for reducing the manual burden associated with some of the language-based enforcements

    Securing Software in the Presence of Third-Party Modules

    Get PDF
    Modular programming is a key concept in software development where the program consists of code modules that are designed and implemented independently. This approach accelerates the development process and enhances scalability of the final product. Modules, however, are often written by third parties, aggravating security concerns such as stealing confidential information, tampering with sensitive data, and executing malicious code.Trigger-Action Platforms (TAPs) are concrete examples of employing modular programming. Any user can develop TAP applications by connecting trigger and action services, and publish them on public repositories. In the presence of malicious application makers, users cannot trust applications written by third parties, which can threaten users’ and platform’s security. We present SandTrap, a novel runtime monitor for JavaScript that can be used to securely integrate third-party applications. SandTrap enforces fine-grained access control policies at the levels of module, API, value, and context. We instantiate SandTrap to IFTTT, Zapier, and Node-RED, three popular JavaScript-driven TAPs, and illustrate how it enforces various policies on a set of benchmarks while incurring a tolerable runtime overhead. We also prove soundness and transparency of the monitoring framework on an essential model of Node-RED. Furthermore, nontransitive policies have been recently introduced as a natural fit for coarse-grained information-flow control where labels are specified at the level of modules. The flow relation does not need to be transitive, resulting in nonstandard noninterference and enforcement mechanism. We develop a lattice encoding to prove that nontransitive policies can be reduced to classical transitive policies. We also devise a lightweight program transformation that leverages standard flow-sensitive information-flow analyses to enforce nontransitive policies more permissively

    Identifying Code Injection and Reuse Payloads In Memory Error Exploits

    Get PDF
    Today's most widely exploited applications are the web browsers and document readers we use every day. The immediate goal of these attacks is to compromise target systems by executing a snippet of malicious code in the context of the exploited application. Technical tactics used to achieve this can be classified as either code injection - wherein malicious instructions are directly injected into the vulnerable program - or code reuse, where bits of existing program code are pieced together to form malicious logic. In this thesis, I present a new code reuse strategy that bypasses existing and up-and-coming mitigations, and two methods for detecting attacks by identifying the presence of code injection or reuse payloads. Fine-grained address space layout randomization efficiently scrambles program code, limiting one's ability to predict the location of useful instructions to construct a code reuse payload. To expose the inadequacy of this exploit mitigation, a technique for "just-in-time" exploitation is developed. This new technique maps memory on-the-fly and compiles a code reuse payload at runtime to ensure it works in a randomized application. The attack also works in face of all other widely deployed mitigations, as demonstrated with a proof-of-concept attack against Internet Explorer 10 in Windows 8. This motivates the need for detection of such exploits rather than solely relying on prevention. Two new techniques are presented for detecting attacks by identifying the presence of a payload. Code reuse payloads are identified by first taking a memory snapshot of the target application, then statically profiling the memory for chains of code pointers that reuse code to implement malicious logic. Code injection payloads are identified with runtime heuristics by leveraging hardware virtualization for efficient sandboxed execution of all buffers in memory. Employing both detection methods together to scan program memory takes about a second and produces negligible false positives and false negatives provided that the given exploit is functional and triggered in the target application version. Compared to other strategies, such as the use of signatures, this approach requires relatively little effort spent on maintenance over time and is capable of detecting never before seen attacks. Moving forward, one could use these contributions to form the basis of a unique and effective network intrusion detection system (NIDS) to augment existing systems.Doctor of Philosoph
    • …
    corecore