1,859 research outputs found

    Through-The-Wall Detection Using Ultra Wide Band Frequency Modulated Interrupted Continuous Wave Signals

    Get PDF
    Through-The-Wall-Detection (TTWD) techniques can improve the situational awareness of police and soldiers, and support first responders in search and rescue operations. A variety of systems for TTWD based on different waveforms have been developed and presented in the literature, e.g. radar systems based on pulses, noise or pseudo-noise waveforms, and frequency modulated continuous wave (FMCW) or stepped frequency continuous wave (SFCW) waveforms. Ultra wide band signals are normally used as they provide suitable resolution to discriminate different targets. A common problem for active radar systems for TTWD is the strong backscattered signal from the air-wall interface. This undesired signal can overshadow the reflections from actual targets, especially those with low radar cross section like human beings, and limit the dynamic range at the receiver, which could be saturated and blocked. Although several techniques have been developed to address this problem, frequency modulated interrupted continuous wave (FMICW) waveforms represent an interesting further approach to wall removal, which can be used as an alternative technique or combined with the existing ones. FMICW waveforms have been used in the past for ionospheric and ocean sensing radar systems, but their application to the wall removal problem in TTWD scenarios is novel. The validation of the effectiveness of the proposed FMICW waveforms as wall removal technique is therefore the primary objective of this thesis, focusing on comparing simulated and experimental results using normal FMCW waveforms and using the proposed FMICW waveforms. Initially, numerical simulations of realistic scenarios for TTWD have been run and FMICW waveforms have been successfully tested for different materials and internal structure of the wall separating the radar system and the targets. Then a radar system capable of generating FMICW waveforms has been designed and built to perform a measurement campaign in environments of the School of Engineering and Computing Sciences, Durham University. These tests aimed at the localization of stationary targets and at the detection of people behind walls. FMICW waveforms prove to be effective in removing/mitigating the undesired return caused by antenna cross-talk and wall reflections, thus enhancing the detection of targets

    FMCW Signals for Radar Imaging and Channel Sounding

    Get PDF
    A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made. In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab

    MIMO radar space–time adaptive processing using prolate spheroidal wave functions

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    UWB Pulse Radar for Human Imaging and Doppler Detection Applications

    Get PDF
    We were motivated to develop new technologies capable of identifying human life through walls. Our goal is to pinpoint multiple people at a time, which could pay dividends during military operations, disaster rescue efforts, or assisted-living. Such system requires the combination of two features in one platform: seeing-through wall localization and vital signs Doppler detection. Ultra-wideband (UWB) radar technology has been used due to its distinct advantages, such as ultra-low power, fine imaging resolution, good penetrating through wall characteristics, and high performance in noisy environment. Not only being widely used in imaging systems and ground penetrating detection, UWB radar also targets Doppler sensing, precise positioning and tracking, communications and measurement, and etc. A robust UWB pulse radar prototype has been developed and is presented here. The UWB pulse radar prototype integrates seeing-through imaging and Doppler detection features in one platform. Many challenges existing in implementing such a radar have been addressed extensively in this dissertation. Two Vivaldi antenna arrays have been designed and fabricated to cover 1.5-4.5 GHz and 1.5-10 GHz, respectively. A carrier-based pulse radar transceiver has been implemented to achieve a high dynamic range of 65dB. A 100 GSPS data acquisition module is prototyped using the off-the-shelf field-programmable gate array (FPGA) and analog-to-digital converter (ADC) based on a low cost solution: equivalent time sampling scheme. Ptolemy and transient simulation tools are used to accurately emulate the linear and nonlinear components in the comprehensive simulation platform, incorporated with electromagnetic theory to account for through wall effect and radar scattering. Imaging and Doppler detection examples have been given to demonstrate that such a “Biometrics-at-a-glance” would have a great impact on the security, rescuing, and biomedical applications in the future

    Performance of 2D Compressive Sensing on Wide-Beam Through-the-Wall Imaging

    Get PDF

    A 94-GHz Frequency Modulation Continuous Wave Radar Imaging and Motion Compensation

    Get PDF
    A compact and lightweight synthetic aperture radar (SAR) that can be loaded on a miniature unmanned aerial vehicle (UAV) was recently developed. The higher the frequency is, the smaller is the antenna size and the microwave characteristics are improved. Thus, a high frequency is favorable for miniaturization and weight reduction. In this chapter, a method of obtaining a radar image through a 94-GHz frequency modulation continuous wave (FMCW) radar is proposed. In addition, a method of motion compensation is described, and the W-band SAR image after motion compensation is confirmed. This kind of SAR imaging can provide geographic information and characteristics of extreme environments, disaster scenes, and information on sites where human access is difficult

    Optmized patch-like antennas for through the wall radar imaging and preliminary results with frequency modulated interrupted continuous wave

    Get PDF
    This paper presents optimized patch-like antennas for Through The Wall Imaging (TTWI) radar applications in the frequency range 0.5-2 GHz, and preliminary results using Frequency Modulated Interrupted Continuous Waveform (FMICW). Results of numerical simulations using basic models of the antenna are presented. The antenna optimization was aimed at making the radiation pattern more directional by focusing the energy in a single lobe to be directed towards the wall and the targets to be detected. The optimized antenna was manufactured and its measured parameters are compared with the simulated results which show good agreement. Some preliminary results from the FMICW radar system using this antenna are presented
    corecore