11,949 research outputs found

    Investigation of strain measurements in (curved) wide plate specimens using digital image correlation and finite element analysis

    Get PDF
    Some pipelines face global plastic straining due to the nature of their installation process or harsh environmental conditions during operation. The ability of the girth welds to withstand these plastic strains is often evaluated on the basis of wide plate tests. Key for the validity of these tests is a representative measurement of remote strain, mostly obtained by linear variable differential transformers and/or strain gauges. The outcome of the remote strain measurement depends on the specimen geometry and the position of these sensors. In an attempt to investigate a specific geometric design of wide plate specimens and to find appropriate remote strain sensor positions, the authors have performed a series of tension tests on medium-sized wide plate specimens, supported by digital image correlation strain measurements. In addition, finite element simulations have been performed to evaluate whether the experimental observations can be extrapolated to a wider range of conditions. The results indicate that the strain distribution is mostly influenced by the weld strength mismatch, which governs the lateral restraint. For all experiments and simulations, nevertheless, the strain field was highly uniform in an identified zone, resulting in simple guidelines regarding specimen geometry and sensor positioning

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Fisheye Photogrammetry to Survey Narrow Spaces in Architecture and a Hypogea Environment

    Get PDF
    Nowadays, the increasing computation power of commercial grade processors has actively led to a vast spreading of image-based reconstruction software as well as its application in different disciplines. As a result, new frontiers regarding the use of photogrammetry in a vast range of investigation activities are being explored. This paper investigates the implementation of fisheye lenses in non-classical survey activities along with the related problematics. Fisheye lenses are outstanding because of their large field of view. This characteristic alone can be a game changer in reducing the amount of data required, thus speeding up the photogrammetric process when needed. Although they come at a cost, field of view (FOV), speed and manoeuvrability are key to the success of those optics as shown by two of the presented case studies: the survey of a very narrow spiral staircase located in the Duomo di Milano and the survey of a very narrow hypogea structure in Rome. A third case study, which deals with low-cost sensors, shows the metric evaluation of a commercial spherical camera equipped with fisheye lenses

    Data compression techniques applied to high resolution high frame rate video technology

    Get PDF
    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended
    • …
    corecore