16 research outputs found

    Study on Image Registration and Automatic Detection of Lung Nodule for Temporal Subtraction from Thoracic CT Images

    Get PDF
    九州工業大学博士学位論文 学位記番号:工博甲第502号 学位授与年月日:令和2年9月25日第1章 序論|第2章 GGVF集中度とシフトベクトルの平滑化によるレジストレーション手法|第3章 Feature-driven FFDを用いたレジストレーション法|第4章 特徴量と機械学習による結節状陰影の自動検出法|第5章 3D-CNNによる経時的差分像上の結節状陰影自動検出|第6章 残差機能を付加した3D-CNNによる経時的差分像上の結節状陰影検出|第7章 考察|第8章 結論九州工業大学令和2年

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    Model-Based Iterative Reconstruction in Cone-Beam Computed Tomography: Advanced Models of Imaging Physics and Prior Information

    Get PDF
    Cone-beam computed tomography (CBCT) represents a rapidly developing imaging modality that provides three-dimensional (3D) volumetric images with sub-millimeter spatial resolution and soft-tissue visibility from a single gantry rotation. CBCT tends to have small footprint, mechanical simplicity, open geometry, and low cost compared to conventional diagnostic CT. Because of these features, CBCT has been used in a variety of specialty diagnostic applications, image-guided radiation therapy (on-board CBCT), and surgical guidance (e.g., C-arm based CBCT). However, the current generation of CBCT systems face major challenges in low-contrast, soft-tissue image quality – for example, in the detection of acute intracranial hemorrhage (ICH), which requires a fairly high level of image uniformity, spatial resolution, and contrast resolution. Moreover, conventional approaches in both diagnostic and image-guided interventions that involve a series of imaging studies fail to leverage the wealth of patient-specific anatomical information available from previous scans. Leveraging the knowledge gained from prior images holds the potential for major gains in image quality and dose reduction. Model-based iterative reconstruction (MBIR) attempts to make more efficient use of the measurement data by incorporating a forward model of physical detection processes. Moreover, MBIR allows incorporation of various forms of prior information into image reconstruction, ranging from image smoothness and sharpness to patient-specific anatomical information. By leveraging such advantages, MBIR has demonstrated improved tradeoffs between image quality and radiation dose in multi-detector CT in the past decade and has recently shown similar promise in CBCT. However, the full potential of MBIR in CBCT is yet to be realized. This dissertation explores the capabilities of MBIR in improving image quality (especially low-contrast, soft-tissue image quality) and reducing radiation dose in CBCT. The presented work encompasses new MBIR methods that: i) modify the noise model in MBIR to compensate for noise amplification from artifact correction; ii) design regularization by explicitly incorporating task-based imaging performance as the objective; iii) mitigate truncation effects in a computationally efficient manner; iv) leverage a wealth of patient-specific anatomical information from a previously acquired image; and v) prospectively estimate the optimal amount of prior image information for accurate admission of specific anatomical changes. Specific clinical challenges are investigated in the detection of acute ICH and surveillance of lung nodules. The results show that MBIR can substantially improve low-contrast, soft-tissue image quality in CBCT and enable dose reduction techniques in sequential imaging studies. The thesis demonstrates that novel MBIR methods hold strong potential to overcome conventional barriers to CBCT image quality and open new clinical applications that would benefit from high-quality 3D imaging

    ADVANCED MOTION MODELS FOR RIGID AND DEFORMABLE REGISTRATION IN IMAGE-GUIDED INTERVENTIONS

    Get PDF
    Image-guided surgery (IGS) has been a major area of interest in recent decades that continues to transform surgical interventions and enable safer, less invasive procedures. In the preoperative contexts, diagnostic imaging, including computed tomography (CT) and magnetic resonance (MR) imaging, offers a basis for surgical planning (e.g., definition of target, adjacent anatomy, and the surgical path or trajectory to the target). At the intraoperative stage, such preoperative images and the associated planning information are registered to intraoperative coordinates via a navigation system to enable visualization of (tracked) instrumentation relative to preoperative images. A major limitation to such an approach is that motions during surgery, either rigid motions of bones manipulated during orthopaedic surgery or brain soft-tissue deformation in neurosurgery, are not captured, diminishing the accuracy of navigation systems. This dissertation seeks to use intraoperative images (e.g., x-ray fluoroscopy and cone-beam CT) to provide more up-to-date anatomical context that properly reflects the state of the patient during interventions to improve the performance of IGS. Advanced motion models for inter-modality image registration are developed to improve the accuracy of both preoperative planning and intraoperative guidance for applications in orthopaedic pelvic trauma surgery and minimally invasive intracranial neurosurgery. Image registration algorithms are developed with increasing complexity of motion that can be accommodated (single-body rigid, multi-body rigid, and deformable) and increasing complexity of registration models (statistical models, physics-based models, and deep learning-based models). For orthopaedic pelvic trauma surgery, the dissertation includes work encompassing: (i) a series of statistical models to model shape and pose variations of one or more pelvic bones and an atlas of trajectory annotations; (ii) frameworks for automatic segmentation via registration of the statistical models to preoperative CT and planning of fixation trajectories and dislocation / fracture reduction; and (iii) 3D-2D guidance using intraoperative fluoroscopy. For intracranial neurosurgery, the dissertation includes three inter-modality deformable registrations using physic-based Demons and deep learning models for CT-guided and CBCT-guided procedures

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Automatic Pancreas Segmentation and 3D Reconstruction for Morphological Feature Extraction in Medical Image Analysis

    Get PDF
    The development of highly accurate, quantitative automatic medical image segmentation techniques, in comparison to manual techniques, remains a constant challenge for medical image analysis. In particular, segmenting the pancreas from an abdominal scan presents additional difficulties: this particular organ has very high anatomical variability, and a full inspection is problematic due to the location of the pancreas behind the stomach. Therefore, accurate, automatic pancreas segmentation can consequently yield quantitative morphological measures such as volume and curvature, supporting biomedical research to establish the severity and progression of a condition, such as type 2 diabetes mellitus. Furthermore, it can also guide subject stratification after diagnosis or before clinical trials, and help shed additional light on detecting early signs of pancreatic cancer. This PhD thesis delivers a novel approach for automatic, accurate quantitative pancreas segmentation in mostly but not exclusively Magnetic Resonance Imaging (MRI), by harnessing the advantages of machine learning and classical image processing in computer vision. The proposed approach is evaluated on two MRI datasets containing 216 and 132 image volumes, achieving a mean Dice similarity coefficient (DSC) of 84:1 4:6% and 85:7 2:3% respectively. In order to demonstrate the universality of the approach, a dataset containing 82 Computer Tomography (CT) image volumes is also evaluated and achieves mean DSC of 83:1 5:3%. The proposed approach delivers a contribution to computer science (computer vision) in medical image analysis, reporting better quantitative pancreas segmentation results in comparison to other state-of-the-art techniques, and also captures detailed pancreas boundaries as verified by two independent experts in radiology and radiography. The contributions’ impact can support the usage of computational methods in biomedical research with a clinical translation; for example, the pancreas volume provides a prognostic biomarker about the severity of type 2 diabetes mellitus. Furthermore, a generalisation of the proposed segmentation approach successfully extends to other anatomical structures, including the kidneys, liver and iliopsoas muscles using different MRI sequences. Thus, the proposed approach can incorporate into the development of a computational tool to support radiological interpretations of MRI scans obtained using different sequences by providing a “second opinion”, help reduce possible misdiagnosis, and consequently, provide enhanced guidance towards targeted treatment planning

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore