2,927 research outputs found

    An Image Hiding Scheme Based on Multi-bit-reference Substitution Table Using Dynamic Programming Strategy

    Get PDF
    [[abstract]]Simple least-significant-bit (LSB) substitution is the most straightforward way to embed the secret image in the host image. Based on the simple LSB substitution, the method using substitution table is proposed to improve the quality of the stego-image. In this paper, we shall bring up a new method that uses the un-embedded host pixel bits to partition the host pixel into different planes. This way, we can derive the optimal substitution table for each plane. By combining the optimal substitution tables, we can obtain the final result that we call the multi-bit-reference substitution table. After transforming the secret data according multi-bit-reference substitution table, we can embed the transformed secret data in the host image so that the host image will be degraded possibly less. The experimental results show that our method leads to good results

    Multi-Stage Protection Using Pixel Selection Technique for Enhancing Steganography

    Get PDF
    Steganography and data security are extremely important for all organizations. This research introduces a novel stenographic method called multi-stage protection using the pixel selection technique (MPPST). MPPST is developed based on the features of the pixel and analysis technique to extract the pixel's characteristics and distribution of cover-image. A pixel selection technique is proposed for hiding secret messages using the feature selection method. The secret file is distributed and embedded randomly into the stego-image to make the process of the steganalysis complicated.  The attackers not only need to deter which pixel values have been selected to carry the secret file, they also must rearrange the correct sequence of pixels. MPPST generates a complex key that indicates where the encrypted elements of the binary sequence of a secret file are. The analysis stage undergoes four stages, which are the calculation of the peak signal-to-noise ratio, mean squared error, histogram analysis, and relative entropy. These four stages are used to demonstrate the characteristics of the cover image. To evaluate the proposed method, MPPST is compared to the standard technique of Least Significant Bit (LSB) and other algorithms from the literature. The experimental results show that MPPST outperforms other algorithms for all instances and achieves a significant security enhancement

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications
    corecore