7,055 research outputs found

    An Illustrated Methodology for Evaluating ASR Systems

    Get PDF
    Proceeding of: 9th International Workshop on Adaptive Multimedia Retrieval (AMR 2011) Took place 2011, July, 18-19, in Barcelona, Spain. The event Web site is http://stel.ub.edu/amr2011/Automatic speech recognition technology can be integrated in an information retrieval process to allow searching on multimedia contents. But, in order to assure an adequate retrieval performance is necessary to state the quality of the recognition phase, especially in speaker-independent and domainindependent environments. This paper introduces a methodology to accomplish the evaluation of different speech recognition systems in several scenarios considering also the creation of new corpora of different types (broadcast news, interviews, etc.), especially in other languages apart from English that are not widely addressed in speech community.This work has been partially supported by the Spanish Center for Industry Technological Development (CDTI, Ministry of Industry, Tourism and Trade), through the BUSCAMEDIA Project (CEN-20091026). And also by MA2VICMR: Improving the access, analysis and visibility of the multilingual and multimedia information in web for the Region of Madrid (S2009/TIC-1542).Publicad

    Performance analysis and optimization of automatic speech recognition

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fast and accurate Automatic Speech Recognition (ASR) is emerging as a key application for mobile devices. Delivering ASR on such devices is challenging due to the compute-intensive nature of the problem and the power constraints of embedded systems. In this paper, we provide a performance and energy characterization of Pocketsphinx, a popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian Mixture Model (GMM) as the main bottleneck, consuming more than 80 percent of the execution time. The CPI stack analysis shows that branches and main memory accesses are the main performance limiting factors for GMM computation. We propose several software-level optimizations driven by the power/performance analysis. Unlike previous proposals that trade accuracy for performance by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance by effectively using the underlying CPU microarchitecture. First, we use a refactored implementation of the innermost loop of the GMM evaluation code to ameliorate the impact of branches. Second, we exploit the vector unit available on most modern CPUs to boost GMM computation, introducing a novel memory layout for storing the means and variances of the Gaussians in order to maximize the effectiveness of vectorization. Third, we compute the Gaussians for multiple frames in parallel, so means and variances can be fetched once in the on-chip caches and reused across multiple frames, significantly reducing memory bandwidth usage. We evaluate our optimizations using both hardware counters on real CPUs and simulations. Our experimental results show that the proposed optimizations provide 2.68x speedup over the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61 percent energy savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by 1.85x, while providing 59 percent energy savings without any loss in the accuracy of the ASR system.Peer ReviewedPostprint (author's final draft

    Adversarial Attacks on Remote User Authentication Using Behavioural Mouse Dynamics

    Full text link
    Mouse dynamics is a potential means of authenticating users. Typically, the authentication process is based on classical machine learning techniques, but recently, deep learning techniques have been introduced for this purpose. Although prior research has demonstrated how machine learning and deep learning algorithms can be bypassed by carefully crafted adversarial samples, there has been very little research performed on the topic of behavioural biometrics in the adversarial domain. In an attempt to address this gap, we built a set of attacks, which are applications of several generative approaches, to construct adversarial mouse trajectories that bypass authentication models. These generated mouse sequences will serve as the adversarial samples in the context of our experiments. We also present an analysis of the attack approaches we explored, explaining their limitations. In contrast to previous work, we consider the attacks in a more realistic and challenging setting in which an attacker has access to recorded user data but does not have access to the authentication model or its outputs. We explore three different attack strategies: 1) statistics-based, 2) imitation-based, and 3) surrogate-based; we show that they are able to evade the functionality of the authentication models, thereby impacting their robustness adversely. We show that imitation-based attacks often perform better than surrogate-based attacks, unless, however, the attacker can guess the architecture of the authentication model. In such cases, we propose a potential detection mechanism against surrogate-based attacks.Comment: Accepted in 2019 International Joint Conference on Neural Networks (IJCNN). Update of DO

    Dublin City University video track experiments for TREC 2003

    Get PDF
    In this paper, we describe our experiments for both the News Story Segmentation task and Interactive Search task for TRECVID 2003. Our News Story Segmentation task involved the use of a Support Vector Machine (SVM) to combine evidence from audio-visual analysis tools in order to generate a listing of news stories from a given news programme. Our Search task experiment compared a video retrieval system based on text, image and relevance feedback with a text-only video retrieval system in order to identify which was more effective. In order to do so we developed two variations of our FĂ­schlĂĄr video retrieval system and conducted user testing in a controlled lab environment. In this paper we outline our work on both of these two tasks

    TRECVID 2004 experiments in Dublin City University

    Get PDF
    In this paper, we describe our experiments for TRECVID 2004 for the Search task. In the interactive search task, we developed two versions of a video search/browse system based on the Físchlár Digital Video System: one with text- and image-based searching (System A); the other with only image (System B). These two systems produced eight interactive runs. In addition we submitted ten fully automatic supplemental runs and two manual runs. A.1, Submitted Runs: ‱ DCUTREC13a_{1,3,5,7} for System A, four interactive runs based on text and image evidence. ‱ DCUTREC13b_{2,4,6,8} for System B, also four interactive runs based on image evidence alone. ‱ DCUTV2004_9, a manual run based on filtering faces from an underlying text search engine for certain queries. ‱ DCUTV2004_10, a manual run based on manually generated queries processed automatically. ‱ DCU_AUTOLM{1,2,3,4,5,6,7}, seven fully automatic runs based on language models operating over ASR text transcripts and visual features. ‱ DCUauto_{01,02,03}, three fully automatic runs based on exploring the benefits of multiple sources of text evidence and automatic query expansion. A.2, In the interactive experiment it was confirmed that text and image based retrieval outperforms an image-only system. In the fully automatic runs, DCUauto_{01,02,03}, it was found that integrating ASR, CC and OCR text into the text ranking outperforms using ASR text alone. Furthermore, applying automatic query expansion to the initial results of ASR, CC, OCR text further increases performance (MAP), though not at high rank positions. For the language model-based fully automatic runs, DCU_AUTOLM{1,2,3,4,5,6,7}, we found that interpolated language models perform marginally better than other tested language models and that combining image and textual (ASR) evidence was found to marginally increase performance (MAP) over textual models alone. For our two manual runs we found that employing a face filter disimproved MAP when compared to employing textual evidence alone and that manually generated textual queries improved MAP over fully automatic runs, though the improvement was marginal. A.3, Our conclusions from our fully automatic text based runs suggest that integrating ASR, CC and OCR text into the retrieval mechanism boost retrieval performance over ASR alone. In addition, a text-only Language Modelling approach such as DCU_AUTOLM1 will outperform our best conventional text search system. From our interactive runs we conclude that textual evidence is an important lever for locating relevant content quickly, but that image evidence, if used by experienced users can aid retrieval performance. A.4, We learned that incorporating multiple text sources improves over ASR alone and that an LM approach which integrates shot text, neighbouring shots and entire video contents provides even better retrieval performance. These findings will influence how we integrate textual evidence into future Video IR systems. It was also found that a system based on image evidence alone can perform reasonably and given good query images can aid retrieval performance

    VITALAS at TRECVID-2008

    Get PDF
    In this paper, we present our experiments in TRECVID 2008 about High-Level feature extraction task. This is the first year for our participation in TRECVID, our system adopts some popular approaches that other workgroups proposed before. We proposed 2 advanced low-level features NEW Gabor texture descriptor and the Compact-SIFT Codeword histogram. Our system applied well-known LIBSVM to train the SVM classifier for the basic classifier. In fusion step, some methods were employed such as the Voting, SVM-base, HCRF and Bootstrap Average AdaBoost(BAAB)

    Relating Objective and Subjective Performance Measures for AAM-based Visual Speech Synthesizers

    Get PDF
    We compare two approaches for synthesizing visual speech using Active Appearance Models (AAMs): one that utilizes acoustic features as input, and one that utilizes a phonetic transcription as input. Both synthesizers are trained using the same data and the performance is measured using both objective and subjective testing. We investigate the impact of likely sources of error in the synthesized visual speech by introducing typical errors into real visual speech sequences and subjectively measuring the perceived degradation. When only a small region (e.g. a single syllable) of ground-truth visual speech is incorrect we find that the subjective score for the entire sequence is subjectively lower than sequences generated by our synthesizers. This observation motivates further consideration of an often ignored issue, which is to what extent are subjective measures correlated with objective measures of performance? Significantly, we find that the most commonly used objective measures of performance are not necessarily the best indicator of viewer perception of quality. We empirically evaluate alternatives and show that the cost of a dynamic time warp of synthesized visual speech parameters to the respective ground-truth parameters is a better indicator of subjective quality

    Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems

    Full text link
    Voice Processing Systems (VPSes), now widely deployed, have been made significantly more accurate through the application of recent advances in machine learning. However, adversarial machine learning has similarly advanced and has been used to demonstrate that VPSes are vulnerable to the injection of hidden commands - audio obscured by noise that is correctly recognized by a VPS but not by human beings. Such attacks, though, are often highly dependent on white-box knowledge of a specific machine learning model and limited to specific microphones and speakers, making their use across different acoustic hardware platforms (and thus their practicality) limited. In this paper, we break these dependencies and make hidden command attacks more practical through model-agnostic (blackbox) attacks, which exploit knowledge of the signal processing algorithms commonly used by VPSes to generate the data fed into machine learning systems. Specifically, we exploit the fact that multiple source audio samples have similar feature vectors when transformed by acoustic feature extraction algorithms (e.g., FFTs). We develop four classes of perturbations that create unintelligible audio and test them against 12 machine learning models, including 7 proprietary models (e.g., Google Speech API, Bing Speech API, IBM Speech API, Azure Speaker API, etc), and demonstrate successful attacks against all targets. Moreover, we successfully use our maliciously generated audio samples in multiple hardware configurations, demonstrating effectiveness across both models and real systems. In so doing, we demonstrate that domain-specific knowledge of audio signal processing represents a practical means of generating successful hidden voice command attacks
    • 

    corecore